
Programmable Solutions for Low-power Lossy
Wireless Networks: A Study of SDN and Femto
Containers

Ahmad Mahmod, Julien Montavont and Thomas Noel

Abstract Low-power Lossy Wireless Networks (LLWNs) are characterized by
constraints in memory, processing, and power consumption, coupled with an in-
herently dynamic wireless environment. In this context, a suite of programmable
communication protocols is essential to efficiently adapt to varying network con-
ditions, optimize resource utilization, and maintain performance within the strin-
gent limitations of LLWN devices. In this work, we review and compare state-of-
the-art network programmability techniques to assess their suitability for LLWNs.
Based on the findings, we propose a new network architecture for LLWNs, utilizing
software-defined networking for control plane programmability and Femto Contain-
ers lightweight virtualization for data plane programmability, ensuring it respects
the constraints of LLWN devices. We have conducted a proof-of-concept validation
to demonstrate the feasibility of Femto Containers to implement the data plane in
LLWN on the FIT IoT-LAB testbed. The results show that our architecture success-
fully achieves a substantial reduction in update size while adhering to memory and
power consumption constraints of LLWN devices, although this comes at the cost
of a slightly acceptable increased packet processing delay.

1 Introduction
A Low-power Lossy Wireless Network (LLWN) is a branch of Internet of Things
consisting of a large number of embedded devices connected using lossy wireless
communication links. LLWNs include sensors, actuators and gateways which are

Ahmad Mahmod
ICube, University of Strasbourg, Pole API, 67412 Illkirch, France, e-mail: mahmod@unistra.fr

Julien Montavont
ICube, University of Strasbourg, Pole API, 67412 Illkirch, France, e-mail: montavont@unistra.fr

Thoms Noel
ICube, University of Strasbourg, Pole API, 67412 Illkirch, France, e-mail: noel@unistra.fr

1



2 Ahmad Mahmod, Julien Montavont and Thomas Noel

advantageous where the installation of infrastructure-based networks (e.g., 5G) is
not possible or is expensive. The application areas of LLWN include environmental
monitoring, healthcare, industrial automation and many other areas [1].

LLWN devices are typically constrained by limited battery power, as well as
limited processing and memory capacity which result in short-range, low data rate
and possibly multi-hop communications [2]. These constraints highlight the need for
network protocols that cope with the limited resources of LLWN by using available
power efficiently and reducing memory and processing overhead.

The wireless nature of LLWN makes communication inherently dynamic. This
dynamicity results from environmental changes, mutual interference between de-
vices, power depletion, and mobility requirements in some applications, which
cause topology variations and affect communication performance, making the com-
munication links unstable and prone to high packet loss. The dynamic environmen-
tal conditions, combined with the diverse Quality of Service (QoS) requirements in
applications, require reconfiguring network protocols. This underscores the need for
network programmability: the ability to reconfigure the protocol suite according to
varying conditions and requirements to achieve optimal performance.

This reconfiguration may involve adjusting the parameters of specific protocols
or replacing the entire protocol. At the application level, when a new application
prioritizes the integrity of the data, enabling checksum in the transport layer ensures
data integrity by detecting corruption in the header and payload during transmission.
For routing, hop-by-hop routing is particularly beneficial in scenarios where the
nodes in the network are static and possess sufficient memory and energy resources
to maintain routing tables. However, as node density increases, the size of routing
tables on intermediate nodes escalates substantially. This scalability necessitates a
transition to the source-routing, where centralized route management mitigates the
burden on individual nodes.

At the medium access level, in dense IoT networks where devices experience
high collision rates and energy inefficiency due to contention-based CSMA, the
transition to time-slotted medium access (TSMA) ensures deterministic communi-
cation and improved energy efficiency [3]. Three programmability levels are defined
in [4]:

• Monolithic defines n protocols and switches between them (e.g., switch from
CoAP to MQTT).

• Parametric modifies some protocol parameters (e.g., backoff time of the radio).
• Modular defines functions in modules and interconnects them to construct the

entire protocol logic representing the highest programmability level.

Implementing a monolithic solution by providing the operating system with multi-
ple concurrent protocols is impractical due to constraints in memory and processing
capacity. Over-The-Air (OTA) firmware updates resolve this issue by enabling the
replacement of the running firmware with a new version that includes the necessary
protocols. However, OTA requires transmitting the whole firmware image over a
multi-hop constrained network and then rebooting the nodes to install the new ver-
sion. This process is likely to increase the power consumption in nodes and requires



Programmable Solutions for Low-power Lossy Wireless Networks 3

a large memory footprint, in addition to network congestion and service disruption
as nodes exchange a large volume of messages to converge to a stable state [5]. Fi-
nally, some operating systems offer Application Programming Interfaces (APIs) to
modify specific parameters of the network stack, such as RIOT [6]. However, this
solution provides limited configuration options.

The available solutions for enabling programmability in LLWN are insufficient,
as they either do not respect the constraints of LLWN, or offer only limited pro-
grammability. In this article, we propose a new architecture that ensures high pro-
grammability of the protocol suite, including low-level functions essential for wire-
less communications, while also adhering to the constraints of LLWN devices. To
the best of our knowledge, we are the first to use virtualization techniques to imple-
ment network protocols in constrained LLWN environments. The contributions of
this article are:

1. Reviewing various network programmability techniques and studying their fea-
sibility for LLWN.

2. Proposing a novel architecture for LLWN using Software Defined Network
(SDN) and Femto Container (FC) lightweight virtualization.

3. Validating our approach with a proof-of-concept implementation.

2 Background and Existing Works
Network processes are divided into two main planes: the control plane and the
data plane. The control plane serves the intelligence of the network, responsible
for decision-making and rule-setting for data forwarding. In contrast, the data plane
applies these rules and handles the actual forwarding of data packets. Achieving a
high level of programmability necessitates reconfigurability in both the decision-
making (control plane) and decision-applying (data plane) components. We detail
here background notions on the state-of-the-art of control plane and data plane pro-
grammability.

2.1 Control Plane Programmability

The Software Defined Networking (SDN) paradigm redefines network architecture
by separating the control plane from the data plane [7]. In SDN, the control plane is
centralized within an entity known as the SDN controller. This controller maintains
a comprehensive, global view of the network and oversees the data plane functions
that remain distributed across network devices. Centralization allows the control
plane to be programmable, enabling the SDN controller to dynamically adjust net-
work behavior and optimize performance based on real-time conditions.

In the LLWN context, the SDN paradigm enables the offloading of complex con-
trol tasks to the central controller. This approach allows devices to prioritize effi-
cient data transmission and energy conservation. Given that LLWN networks typ-
ically operate in a multi-hop fashion, many proposals focus on decentralized rout-
ing, where path computation is handled by the central controller. SDN-WISE [8]



4 Ahmad Mahmod, Julien Montavont and Thomas Noel

replaces the packet processing pipeline of devices with Match-Action flow tables
managed by the controller. Ouhab et al. have proposed a hybrid approach where a
distributed routing protocol is utilized at a small scale, while the large-scale manage-
ment of routing paths is delegated to an SDN controller [9]. Other solutions have
been developed to manage the scheduling of time-slotted networks. SDN-TSCH
[10] introduced a novel SDN-based scheduling approach that isolates flows, which
helps to meet and guarantee their QoS requirements, and ensures a reliable control
plane through the use of dedicated slots. We observe that the majority of SDN-based
works in LLWN focus on specific tasks in the network stack such as scheduling and
forwarding. In this article, our objective is to expand on this contribution by ad-
vocating for the comprehensive management of the entire communication protocol
suite.

2.2 Data Plane Programmability

In this section, we review some state-of-the-art technologies that can be used to
program the data plane and compare their feasibility for LLWN.

2.2.1 P4 Programming Language

Programming Protocol-independent Packet Processors (P4) is a high-level program-
ming language dedicated to programming the data plane of network devices such as
routers or switches [11]. This architecture is hardware-agnostic and consists of three
main stages: the Parser, responsible for understanding the packet header; the Pro-
cessing stage, which manipulates packets in a key-action manner; and the Deparser,
which reconstructs the processed packet. For example, P4 has been used to define
the data plane of IEEE802.11 in the Linux network stack, facilitating access to pre-
viously inaccessible management frames [12].

2.2.2 eBPF

The extended Berkeley Packet Filter (eBPF) is a virtual machine for programming
the kernel of Linux-based operating systems, enabling versatile applications in se-
curity, monitoring, and networking [13]. The eBPF virtual machine is event-based,
triggered by specific events using hooks—checkpoints installed in the operating
system to monitor particular events. Networking hooks include eXpress Data Path
(XDP) at the lowest layer of the Linux network stack, offering fast packet processing
with basic and limited actions, and Traffic Control (TC) in the upper layers, which
offers broader processing capabilities, striking a balance between performance and
flexibility. The virtual machine is lightweight, featuring 11 registers and a 512-byte
stack, and can be updated and connected without the need to modify the kernel.
eBPF has many applications in networking, such as extending the TCP stack with
new arbitrary options [14].



Programmable Solutions for Low-power Lossy Wireless Networks 5

2.2.3 Femto Container

Femto Container (FC) is a new middleware that enables the deployment of lightweight
virtual machines on resource-constrained devices [15]. This technology extends the
eBPF virtual machine to Real-Time Operating Systems (RTOS) used in LLWN de-
vices, offering a minimal memory footprint and affordable processing overhead.
Moreover, FCs are hardware-agnostic and therefore compatible with various hard-
ware specifications or boards. FC is lightweight, featuring 11 registers and a 512-
bytes stack, and operates on an event-based model similar to eBPF. However, FCs
extend its functionality with user-defined hooks that can be installed at any point
in the operating system, from the driver to the application layer. The launching and
updating of FCs are transparent to the operating system, and do not require firmware
updates. In [15], FC was used to read sensor data at the driver level and transmit it
using the Constrained Application Protocol (CoAP) at the application level.

We can conclude that, compared to eBPF, FC maintains the same virtual machine
architecture but introduces a new engine for eBPF virtual machines within RTOS.
Moreover, unlike eBPF, which is restricted to predefined hooks, FC allows users to
define hooks at any point within the operating system.

2.2.4 Comparison

Table 1 compares the reviewed technologies. While P4 and eBPF are robust solu-
tions for programming the data plane in devices with high performance, they present
challenges for deployment in LLWN devices due to hardware limitations and no ra-
dio management capabilities. P4 requires more powerful hardware than typically
available in LLWN devices, and lacks P4 targets for such resource-constrained de-
vices. eBPF, despite its small memory footprint, is originally designed for Linux
OS, which imposes hardware requirements that exceed those of LLWN devices.
Both P4 and eBPF primarily focus on post-packet reception processing and do not
directly manage radio-related operations. Although eBPF can perform some driver-
level tasks, its capabilities are limited to basic operations such as packet dropping,
redirection, and forwarding.

Table 1 Comparison between Technologies

P4 eBPF Femto-Container

Scope Domain-specific for data
plane of network devices

Programming Linux Ker-
nel including network
stack

Event-driven applications
in constrained devices

Footprint Large memory and pro-
cessing requirements

Small memory footprint Small memory footprint

Limitations Need high performance
hardware, no radio man-
agement

Limited to Linux Kernel,
no radio management

Limited to some RTOSs
until now



6 Ahmad Mahmod, Julien Montavont and Thomas Noel

In contrast, FC is a promising solution for implementing isolated network proto-
cols and managing radio-related operations through specific hooks at different oper-
ating system levels. With its minimal memory footprint, light processing overhead,
and event-triggered architecture, FC is well-suited for the resource-constrained na-
ture of LLWN. A modular approach can be adopted, where elementary functions
are implemented in independent FCs. By interconnecting these FCs, we can create
complex application logic. These applications include communication protocols at-
tached to different hooks across the protocol stack, allowing runtime updates. While
FCs are compatible with various hardware platforms, their current limitation to cer-
tain RTOS exists. However, as a novel technology, there is potential for FCs to
expand support to additional operating systems in the future.

3 Proposed Architecture
For programming constrained LLWN, we propose an architecture that integrates
the SDN paradigm and lightweight virtualization, featuring an SDN controller that
serves as the central manager of the network and runs the control plane that pushes
the protocols in the data plane distributed on LLWN devices. The data plane in the
devices adopts a micro-service approach, where fundamental functions are imple-
mented within lightweight virtual machines. These virtual machines, each repre-
senting a micro-service, offer secure and isolated functionalities that can be easily
updated. By interconnecting these micro-services, a complete protocol can be con-
structed within the data plane. Based on our previous review, we propose Femto
Containers (FCs) to define these micro-services, but any other lightweight virtual-
ization technique could play this role. Fig. 1 illustrates the architecture, which will
be detailed in the following sections.

3.1 Control Plane

The SDN controller continuously receives updates on environmental conditions
from LLWN devices, including metrics such as the packet delivery rate and interfer-
ence level. Based on the evaluation of these conditions and performance targets, the

Operating System
Timer HookRX Hook TX Hook

FC FCFC

Duty-Cycle Management

Packet Processing Pipeline

FC

FC

Processor

FC FC

Parser

Deparser

FC FC

LLWN Device

Send Packet

SDN
Controller

(b) FC Update:
Update a specific
FC of Duty-Cycle 

Radio Management

(a) Module Update:
Update Processor

Module

Fig. 1 Proposed Architecture



Programmable Solutions for Low-power Lossy Wireless Networks 7

controller defines the appropriate protocols in the form of FC chains and distributes
them to the data plane in the devices. The proposed modifications can range from
adjusting specific protocol parameters to updating entire protocol or individual func-
tions as needed. For example, if the packet delivery rate drops significantly due to
increased interference, the controller might switch from a standard MAC protocol to
a more robust, interference-tolerant protocol to maintain network performance and
reliability.

3.2 Data Plane

The data plane is distributed in all LLWN devices and consists of sequences of
FCs, each responsible for fundamental functions such as medium access control
and packet processing. Each FC may be triggered by a hook (event) such as packet
reception and transmission events or timing events, or it may be triggered by another
FC in the chain. The FC-based data plane can handle high-level network tasks, for
instance, consider the implementation of a Packet Processing Pipeline (Fig. 1). Upon
receiving a message from the radio (RX Hook), the Parser is activated to decompose
the message header. Subsequently, the processing stage determines the appropriate
output before initiating the Deparser to reconstruct the message for transmission.
Additionally, FCs can manage low-level networking aspects such as pre-reception
functions related to the radio using specific timing hooks, such as Duty-Cycle Man-
agement (Fig. 1). These functionalities are crucial and cannot be achieved using P4
or eBPF.

3.3 Architecture Features

Our proposed architecture introduces a lightweight, programmable, and modu-
lar network stack for LLWNs, leveraging SDN principles and lightweight FCs for
virtualization.

The lightweight nature of the architecture is achieved through the integration
of event-driven, lightweight FCs and the centralization of the control plane. This
design significantly reduces the computational overhead on LLWN devices.

In terms of programmability, the adoption of the SDN paradigm in the control
plane facilitates the dynamic specification of network protocols to meet the changing
requirements and conditions of the network. Additionally, FC virtualization in the
data plane provides a flexible framework that supports dynamic updates deployed
by the SDN controller in the control plane.

The architecture is also inherently modular, incorporating a two-tier modularity
in the data plane. The first level of modularity exists between protocols or services,
allowing individual protocols to be updated or replaced independently without im-
pacting other components. For instance, the replacement of the Processor module
does not affect the other modules illustrated in Fig. 1-(a). The second level of mod-
ularity exists within the protocol itself, allowing individual FCs to be updated inde-
pendently of the others. For instance, a specific FC in Duty-Cycle Management can
be updated while the others remain unchanged as depicted in Fig. 1-(b).



8 Ahmad Mahmod, Julien Montavont and Thomas Noel

Compared to traditional OTA updates, this architecture aligns well with the con-
straints of LLWNs. Rather than transmitting an entire firmware image for updates,
it focuses solely on updating the relevant FCs. This approach minimizes network
congestion, reduces power consumption and required memory footprint, and ac-
celerates the update process, making it more efficient and sustainable for LLWN
environments.

4 Evaluation
To validate the feasibility of using lightweight virtualization technique to implement
network protocols, we implemented the UDP protocol using Femto-Containers in
RIOT operating system as a proof-of-concept. We selected UDP because it is one
of the simplest protocols in the network stack, making it an ideal candidate for
initial implementation. Future work will focus on implementing protocol updates
and extending the implementation to include other layers of the protocol stack pro-
posed in our architecture. This open-source implementation1 was compared to the
default GNRC (Generic network stack) IP in RIOT. Fig. 2 shows the network stack
of both implementations. In the GNRC stack, each layer has its own thread running
permanently in the background along with the associated thread stack. In contrast,
our implementation is event-based, with two Femto-Containers being triggered only
when a packet is received by (UDP Recv) or sent from (UDP Send) the UDP layer.
The checksum in UDP, is implemented as an update and can be optionally installed
by the controller on LLWN devices when data integrity is required. This approach
offers a significant advantage over GNRC, which requires a complete OTA firmware
update when it becomes necessary.

The experiments were conducted on the FIT IoT-LAB testbed [16] using the IoT-
LAB M3 board, which features an ARM Cortex M3 CPU, 2.4 GHz radio transceiver,
256KB of ROM, and 64KB of RAM.

We compared the FC and GNRC implementations on four metrics: update size,
memory footprint, power consumption and execution time across various scenarios.
To support reproducibility, we provide the raw results and processing scripts in the
Git repository1.

Physical (IEEE 802.15.4)

Data Link (IEEE 802.15.4)

Network (IPv6)

Transport (UDP)

Application

Physical (IEEE 802.15.4)

Data Link (IEEE 802.15.4)

Network (IPv6)

Application

UDP Recv UDP Send

FC StackGNRC Stack

Physical (IEEE 802.15.4)

Data Link (IEEE 802.15.4)

Network (IPv6)

Transport (UDP)
with checksum

Application

GNRC Update

UDP Send
with checksum

UDP Recv
with checksum

FC Update

Fig. 2 GNRC Stack and FC Stack and Updating Methodology

1 https://github.com/ahmahmod/UDP-Protocol-using-Femto-Containers



Programmable Solutions for Low-power Lossy Wireless Networks 9

Table 2 Update Size (KB)

GNRC UDP Send UDP Recv
113.65 KB 0.59 KB 0.60 KB

4.1 Update Size

To evaluate the advantages of our proposed architecture, we compared the size
of updates required to enable checksum functionality in both the FC-based and
GNRC implementations as shwon in Table. 2. In the GNRC implementation, an
OTA firmware update of 113.65 KB is necessary, even for this minor modification.
In contrast, our FC-based architecture requires updating only two FCs (UDP Send
and UDP Recv), with a total size of 1.19 KB. This demonstrates that the update
size using our architecture constitutes merely 1.05% of the OTA firmware update
required by GNRC.

Large update sizes pose significant challenges in constrained LLWNs, particu-
larly when fragmentation is employed, such as in 6LoWPAN over IEEE 802.15.4
networks. The loss of a single fragment leads to the complete failure of the packet,
resulting in increased power consumption and elevated processing load due to re-
transmissions and recovery efforts.

This significant reduction in update size leads to substantial benefits, including
decreased update time, reduced network congestion, lower power consumption, and
minimized memory footprint and processing load on devices. These results highlight
the efficiency and suitability of our architecture for resource-constrained LLWN
environments.

In future work, we plan to implement more complex scenarios to further demon-
strate the significant advantages of adopting this architecture, particularly in dy-
namic and high-density network conditions.

4.2 Memory Footprint

We compared the ROM and RAM footprints of GNRC and FC implementations,
both written in C, using the LLVM compiler on the FIT IoT-LAB M3 node. Foot-
prints were analyzed with Cosy2. As shown in Fig. 3, the FC implementation in-
creases the ROM footprint by 2.49% compared to GNRC. This increase is due to
the installation of the FC engine and new modules for packet processing and inter-
action with RIOT. On the other hand, the RAM footprint of the FC implementation
shows a reduction in RAM usage by almost 5.7% compared to GNRC. While the
FC engine slightly increases the RAM footprint, this is offset by the removal of
the continuously running thread for the UDP layer and its dedicated stack in RAM.
Overall, this adjustment compensates for the slight increase and results in a reduced
overall RAM footprint.

2 https://github.com/haukepetersen/cosy



10 Ahmad Mahmod, Julien Montavont and Thomas Noel

ROM RAM
0

20

40

60

80

100

M
em

or
y 

(K
B)

+ 2.49%

- 5.72%

FC
GNRC

Fig. 3 Memory Footprint

FC
_1

GNRC_
1

FC
_2

GNRC_
2

FC
_3

GNRC_
3

57.50

57.75

58.00

58.25

58.50

58.75

59.00

Po
w

er
 (

m
W

)

Fig. 4 Power Consumption

4.3 Power Consumption

To measure the power consumption of the FC and GNRC implementations, we dis-
abled the radio transceiver of one FIT IoT-LAB M3 node to isolate its power con-
sumption contribution. Subsequently, we ran the UDP sender and UDP receiver
together on this node to measure the power consumption resulting from both im-
plementations. The communication scenario involved sending 1000 packets from
the UDP sender to the UDP receiver using the loopback interface. We varied the
transmission intervals between 1-second, 2-seconds, and 3-seconds to assess power
consumption under different operational conditions. We used the INA226 hardware
component provided by FIT IoT-LAB to measure power consumption, taking peri-
odic measurements every 588 µs with an averaging count of 512.

By observing the results in Fig. 4, we can see that both implementations have
comparable power consumption. This demonstrates that our proposed architecture,
leveraging on lightweight virtualization, maintains low power consumption—a crit-
ical factor for LLWN devices—despite the utilization of virtualization. Our architec-
ture is energy efficient for packet processing, but it still requires further investigation
for low-level management tasks that manipulate the radio.

4.4 Execution Time

We measured the execution time needed to send or receive a packet at the UDP layer
to compare the performance of the FC and GNRC implementations. To conduct this
measurement, we sent 1000 packets at 1-second intervals from a UDP sender on
one M3 node to a UDP receiver on another M3 node. Additionally, to demonstrate
interoperability, we measured the execution time for scenarios where packets were
exchanged between two nodes, with one node running the FC implementation and
the other running the GNRC implementation.

Fig. 5 and Fig. 6 show the execution time for each packet, with the sequence num-
ber indicated on the X-axis. The results show almost constant execution times for
the transmission and reception of UDP packets over time for both implementations.



Programmable Solutions for Low-power Lossy Wireless Networks 11

900

800

700

600

500

0 200 800 1000400 600

Packet Number

FC -> FC 

FC -> GNRC

GNRC -> FC

GNRC -> GNRC

E
x
e
c
u

t
io

n
 T

im
e
 (

u
s
)

FC -> GNRCFC -> FC

GNRC -> GNRC GNRC -> FC

Fig. 5 Transmission Execution Time

100

90

80

70

60

50

40

30

0 200 800 1000400 600

Packet Number

FC -> FC 

GNRC -> FC 

FC -> GNRC

GNRC -> GNRC

E
x
e
c
u

t
io

n
 T

im
e
 (

u
s
)

FC -> FC

GNRC -> GNRC

GNRC -> FC

FC -> GNRC

Fig. 6 Reception Execution Time

The longer execution time for transmission compared to reception in both imple-
mentations is due to a while loop in the code, which increases processing overhead.
Fig. 5 indicates that the FC implementation takes approximately 1.97 times longer
than the GNRC for transmission, while Fig. 6 shows that FC increases reception
time by about 3.3 times compared to GNRC, due to virtualization overhead. De-
spite this, FC’s execution time remains in the microsecond range, which is accept-
able for LLWN networks. This is the trade-off for achieving a fully programmable
data plane in LLWN using virtualization. However, using FC for synchronous proto-
cols that require precise timings may be challenging, a topic we will explore further
in future research.

5 Conclusion and Future Work
A programmable protocol suite for LLWNs provides essential adaptability to dy-
namic wireless environments and varying application QoS requirements. This flex-
ibility ensures optimized performance and enhances resilience in LLWN. In this
article, we have reviewed and compared several network programming technolo-
gies and studied their feasibility for LLWN. We then proposed a lightweight, pro-
grammable and modular architecture that respects the constraints of LLWN devices
and responds to the dynamic changes of the environment. We have also validated
the feasibility of using lightweight virtualization to define the data plane through
a proof-of-concept implementation of the UDP protocol and checksum update us-
ing Femto Containers (FCs), comparing it with the GNRC implementation in RIOT
operating system across the FIT IoT-LAB testbed.

The proof-of-concept study demonstrated a 98.95% reduction in the update size
required to enable checksum functionality in UDP using FC implementation when
compared to the GNRC implementation using OTA firmware updates. This signifi-
cant reduction underscores the remarkable efficiency of our proposed architecture in
minimizing update overhead, a critical factor for constrained LLWNs. System-level
results showed that our proposal balances a slight increase in ROM with a corre-
sponding reduction in RAM usage. Moreover, both implementations present similar
power consumption profiles. Finally, our implementation showed a slight increase
in packet processing delay, but remains in the microsecond range which is accept-



12 Ahmad Mahmod, Julien Montavont and Thomas Noel

able in LLWN communications. This point will be further investigated, especially
when we will consider synchronous protocol.

For future work, we aim to implement the entire network stack of LLWN devices
in FCs, including low-level protocols such as MAC protocols. Our initial choice of
UDP was driven by its simplicity, serving as a first step to validate the feasibility of
using FCs for implementing network protocols. We will also develop an easy-update
mechanism for the installed FCs and integrate it with an SDN controller to manage
the distribution of FCs.

Acknowledgements This work was funded by ANR, Grant ANR-23-CE25-0008. For the purpose
of Open Access, a CC-BY public copyright licence has been applied by the authors to the present
document and will be applied to all subsequent versions up to the Author Accepted Manuscript
arising from this submission.

References

1. Ko, J., et al. (2011). Connecting low-power and lossy networks to the internet. In: IEEE
Communications Magazine.

2. Omar, A., et al. (2023). A comprehensive survey on detection of sinkhole attack in routing
over low power and Lossy network for internet of things. In: Internet of Things 22.

3. Djidi, N. E. H., et al. (2022). The revenge of asynchronous protocols: Wake-up Radio-based
Multi-hop Multi-channel MAC protocol for WSN. In: IEEE WCNC.

4. P. H. Isolani, et al. (2019). A Survey on the Programmability of Wireless MAC Protocols. In:
IEEE Communications Surveys & Tutorials.

5. C. Vallati, et al. (2019). Improving Network Formation in 6TiSCH Networks. In IEEE Trans-
actions on Mobile Computing.

6. E. Baccelli, et al. (2018). RIOT: An Open Source Operating System for Low-End Embedded
Devices in the IoT. In: IEEE Internet of Things Journal.

7. W. Xia, et al. (2015). A Survey on Software-Defined Networking. In: IEEE Communications
Surveys & Tutorials.

8. L. Galluccio, et al. (2015). SDN-WISE: Design, prototyping and experimentation of a stateful
SDN solution for WIreless SEnsor networks. In: INFOCOM.

9. Ouhab, A., et al. (2020). Energy-efficient clustering and routing algorithm for large-scale
SDN-based IoT monitoring. In: IEEE-ICC.

10. Veisi, F., et al. (2023). Enabling centralized scheduling using software defined networking in
industrial wireless sensor networks. In: IEEE Internet of Things Journal.

11. Hauser, F., et al. (2023). A survey on data plane programming with p4: Fundamentals, ad-
vances, and applied research. In: Journal of Network and Computer Applications.

12. Zanna, P., et al. (2020). WP4: A P4 Programmable IEEE 802.11 Data Plane. In: 30th Interna-
tional Telecommunication Networks and Applications Conference (ITNAC).

13. Vieira, M. A., et al. (2020). Fast packet processing with ebpf and xdp: Concepts, code, chal-
lenges, and applications. In: ACM Computing Surveys (CSUR).

14. Tran, V. H., et al. (2019). Beyond socket options: making the Linux TCP stack truly extensi-
ble. In: 2019 IFIP Networking Conference.

15. Zandberg, K., et al. (2022). Femto-containers: lightweight virtualization and fault isolation
for small software functions on low-power IoT microcontrollers. In: Proceedings of the 23rd
ACM/IFIP International Middleware Conference.

16. Adjih, C., et al. (2015). FIT IoT-LAB: A large scale open experimental IoT testbed. In: IEEE
2nd World Forum on Internet of Things (WF-IoT).


