
IEEE Communications Magazine • Accepted for Publication1 0163-6804/24/$25.00 © 2024 IEEE

AbstrAct
In an ever-increasing number of contexts, it has

now become common to use federated learning
(FL) techniques, through which several heteroge-
neous devices cooperate in a distributed manner
to increase the effectiveness in training machine
learning (ML) models while maintaining confi-
dentiality of the respective data. The federated
learning process shows performance levels that
are highly dependent, not only on the data avail-
able to each participant in the process, but also
on the choice of devices that act as clients from
time to time and that collaborate with each other.
So far, much of the literature has focused on a
client selection that considers the device compu-
tational/memory capabilities and the end-to-end
delays of the process. However, no one so far has
fully exploited the intrinsic capabilities of current
and future programmable networks. This article
introduces, for the first time, an approach to client
selection that is augmented and made more effec-
tive by a joint orchestration carried out by the FL
server and the controller of an software-defined
networking (SDN) network. It will be demonstrat-
ed through a performance evaluation campaign
that the use of typical SDN principles also in the
client selection phase leads to significant advan-
tages in terms of effectiveness and efficiency.

IntroductIon
Recently, federated learning (FL) is attracting
growing interest, being an efficient paradigm
capable of achieving similar results to centralized
learning but through a fully distributed process
[1]. According to FL, in each round the learning
model is trained with local data available at remote
devices participating in the process (the so-called
FL Clients) and only the resulting model parameters
are transmitted to a central server (the so-called FL
Server). This latter aggregates them to obtain a more
performing model and returns the newly updated
parameters to all clients for the next training round.
The procedure is repeated for several cycles until
the desired level of accuracy is achieved. In this way,
data transmission costs are significantly reduced and
user privacy is protected [2].

The shorter the iterations, the better perfor-
mance the FL process can achieve [3]. Consid-
ering that the FL server cannot aggregate the
global model until all clients have successfully
delivered their parameters, there are two main
causes of reduced effectiveness of the entire pro-

cess (for the same available dataset). The first is
the involvement of FL client devices with low pro-
cessing capacity and memory. The second main
reason for process inefficiency is the presence of
high-performance devices which however have
poor quality connections or a congested path to
the server. In both cases the central server will
have to wait for stragglers (i.e., devices that delay
FL training), which could significantly reduce the
convergence time to the desired model accura-
cy value. Therefore, carrying out effective client
selection that avoids the participation of stragglers
in the FL process becomes crucial to speed up the
training process.

The literature is rich in proposals addressing
the issue of Client Selection in a very sophisticat-
ed and effective way. Most of them come from
the data science and ML research communities
and approach Client Selection by primarily focus-
ing on the device computational resources and
on the nature of the local data used for training.
Equally interesting works, reflecting the contri-
bution of the wireless communications research
community, address the problem also consider-
ing the availability of communication resources at
the air interface. Instead, solutions addressing the
possible impact that the delay on Client-Server
network segments could have on client selection,
which the networking scientific community con-
tributes to, do not appear to have been adequate-
ly studied yet.

At the same time, new available paradigms
in software-based networks such as emerg-
ing 5G and 6G ones, first and foremost that of
Software-Defined Networking (SDN), have the
potential to provide strong support to federated
learning processes [4]. It is not just about creating
a sort of overlay network that constantly optimiz-
es the paths followed by client-server traffic and
vice versa, which is part of the standard purposes
of SDN. Rather, an interesting and still missing
contribution, as far as we know, consists in eval-
uating the potential advantage of leveraging SDN
within the choice and continuous dynamic updat-
ing of FL clients. This is with a view to maintaining
the distributed learning process at constantly high
levels of effectiveness, efficiency and quality.

In a previous article [5] we began to investigate
the performance achievable from SDN-assisted
client selection in the presence of homogeneous
clients. This allowed us to evaluate the positive
effects of introducing SDN into the FL selection

Ahmad Mahmod, Pasquale Pace, and Antonio Iera

Ahmad Mahmod is with ICube Laboratory University of Strasbourg, France;
Pasquale Pace and Antonio Iera are with University of Calabria, Italy, and also with CNIT, Italy.

Digital Object Identifier: 10.1109/MCOM.003.2400093

The Role of SDN to Improve
Client Selection in Federated Learning

ACCEPTED FROM OPEN CALL

The authors introduce an
approach to client selection that
is augmented and made more
effective by a joint orchestration
carried out by the federated
learning server and the controller
of a software-defined networking
network.

IEEE Communications Magazine • Accepted for Publication 2

process in the presence of clients that all have
the same computational performance. In this way,
since differences in computational power and cli-
ent memory did not come into play, the benefit
of the reduction in network delays on the perfor-
mance of the FL process clearly emerged.

In this article, we go further and improve the
performance of the entire FL process, considering
the following aspects not yet the subject of any
work in the literature, to the best of the authors’
knowledge:
• When carrying out client selection round

after round, consider in a joint manner
both the available computational resources
(Memory and CPU) of each client and the
conditions of the network links that connect
each of them to the server.

• Implement mechanisms whereby SDN enters
the selection process by providing the server
with additional information from all poten-
tial clients (both the one already engaged
in each round and the others not currently
engaged but available) over their optimized
paths.

• Exploit this information, by the FL server/
orchestrator, together with that relating
to the computational resources to decide
whether to confirm the clients in the subse-
quent round or replace them with other cli-
ents estimated to be better performing also
considering the network crossing delay.

• Assess SDN’s ability to improve the conver-
gence times of the FL process and quantify
the computation and traffic burden added to
the system and controller.
Specifically, the work is organized as follows.

Following the brief overview of reference works in
the next section. Then we describe the reference
system for our study. Following that we introduce
the proposed client selection policy. A proof-of-
concept test campaign with the results obtained
follows next. Finally, we highlight possible open
research issues and report our conclusions.

relAted Works
For some years now, several works have appeared
in the literature that propose more efficient Client
Selection methods than those simply based on
random or quasi-random criteria. Some contri-
butions, like the one in [6], propose a multicri-
teria-based approaches to FL client selection by
accounting for CPU, memory, energy, and time.
Other contributions also add as a criterion of
choice the guarantee of fairness to the clients [7]
and the reputation of the clients themselves [8].

Another interesting work proposes to increase
the training efficiency, as well as the final model
performance, through a stochastic client selection
scheme [9]. The authors of [10], instead divide
clients into tiers based on their training perfor-
mance and select clients from the same tier in
each training round to mitigate the straggler prob-
lem caused by heterogeneity in resource and data
quantity.

The examples shown are representative of a
large body of research that mainly addresses the
problem of FL client selection by focusing on het-
erogeneity of local data and terminal computing
resources. Some also consider efficiency aspects
in communication but mainly limiting themselves

to the wireless segment that connects IoT devic-
es to the network. Our approach instead aims
precisely to evaluate the influence that any bot-
tlenecks in the fixed segment of a 5G/6G soft-
warized network can have on the process and
how to make the latter more efficient by giving a
role to the SDN controller within the client selec-
tion process.

Research on the role of SDN in supporting
distributed learning is at the initial embryonic
stage. For example, in [11] the authors propose
the use of an SDN controller to create an overlay
network in which the FL server and clients can
perform auction bidding and product provision.
Differently, in [12] an efficient resource slicing
scheme for optimizing federated learning in soft-
ware-defined IoT is proposed. In [13] it is suggest-
ed that SDN could be used to make IoT gateways
alleviate some of the distributed ML issues by col-
lecting data from local IoT devices and cooper-
ate with nearby edge servers. In a scenario with
mobile IoT devices involved in FL processes, the
authors of [14] propose a clever content place-
ment supported by SDN controllers capable, in
the presence of multiple points of computation
and caching, to control the data plane and enable
seamless communications while maintaining QoS.

Giving a role to the SDN controller within the
client selection process, as far as we know, is a
concept not addressed so far in the literature.
And this is precisely the main objective of our
research, in line with the emerging interest in the
“Network for AI” paradigm, as opposed to the
more traditional approach of “AI for networks”.

the reference system
The schematic reference system architecture
underlying our proposal is shown in Fig. 1. The
proposed selection process supported by SDN
is implemented by what we indicate in the figure
as the orchestration module. The latter includes
the functions traditionally implemented by the FL
server (it could also coincide with its augmented
version), namely the training of the local models
received by the heterogeneous devices and the
creation of the global model to be redistributed to
them. It also implements additional functions that
enable the interaction with a Network Orchestra-
tor (SDN Controller) and the selection of clients
with the support of the latter, as illustrated in the
next section.

The data exchange between FL Orchestrator
and Network Controller is continuous. In one
direction the Controller sends information on the
delays relating to the paths on which the data of
the active clients travel, as well as estimates on
the delays of the remaining clients not currently
involved in the process. The information relating
to the outcome of the client selection travels in
the opposite direction, allowing the Network Con-
troller to dynamically select and maintain the best
paths for the selected clients and to estimate the
delays of clients that are temporarily inactive but
potentially selectable later.

sdn-AssIsted clIent selectIon
Several sophisticated client selection schemes
could be considered to jointly exploit informa-
tion received from the devices (relating to their
capabilities) and from the SDN network controller

Several sophisticated client
selection schemes could be
considered to jointly exploit
information received from

the devices (relating to
their capabilities) and from
the SDN network controller

(relating to the conditions of
the network and the select-

ed paths).

IEEE Communications Magazine • Accepted for Publication3

(relating to the conditions of the network and the
selected paths). This is not within the scope of
this work, since what we intend to provide is a
proof of concept that the proposed approach can
show interesting advantages in the face of limited
additional costs. Therefore, for now we will use a
very elementary scheme that relates the two con-
tributions mentioned, reserving the right to delve
deeper into this specific aspect in future works.

We simply rely on a linear combination of two
indices. A first index is the Computational Index
(CI), calculated for each client as a weighted aver-
age of the resources that the device can make
available for the learning process. It takes into
account the contributions of CPU and free mem-
ory FM which, without any loss of generality, have
the same weight in this proof-of-concept study;
future investigations will be dedicated to discov-
ering the effects of a dynamic choice of these
parameters too. This index can give a rough esti-
mate of the goodness of a device in terms of pre-
cision and computational speed. A device with a
high-performance and less busy CPU is potentially
more capable of performing a greater number
of operations while taking less time to perform
parameter updates; it can store a larger training
data set if its memory is larger; if the charge level
of its battery is high the performance curve can
reach the maximum to obtain greater precision.
The higher the index value, the better the device’s
ability to perform fast and accurate computations.

As shown in Eq. 1, the processing capacity of
the generic client j is computed by considering
the ratio between the CPUs available in the cli-
ent compared to the maximum number of CPUs
available in the best performing client and their
percentage of utilization.

𝐶𝐶𝐶𝐶𝐶𝐶! =
#	𝑜𝑜𝑜𝑜	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶!
𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶	𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 21 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!7;	

				0 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶! ≤ 1	
 (1)
A similar calculation is made for the second

contribution to the CI index, which is the available
free memory (FM) in each client normalized to
the maximum amount of RAM available in the
most powerful client.

Furthermore, for each device a Normalized
Delay Index (NDI) will also be used to account
for the expected delay to deliver the update
to the Server, based both on the value of the
throughput at the device interface and on the
network resources available along the path (of
which the SDN Controller has an always updat-
ed view through the information exchanged with
the Openflow switches). NDI is expressed as the
normalized communication delay of a given client
with respect to the maximum delay experienced
by the clients during the previous training round.

By appropriately combining the two indexes,
an overall performance metric PI can be obtained,
which uniquely indicates for each device j how
efficient it can work in terms of computational
capacity and (predicted) network conditions. This
overall metric can drive the choice of the best sub-
set of devices to be selected at each stage of the
FL process. A coefficient a {[0, 1]} that weights
the two parts of the index PI can be chosen, from
time to time, to give greater weight either to the
computational index (CI), if the performance of
each device is to prevail, or to the normalized
delay index (NDI), thus involving devices which
experience a lower communication delay.

PIj = a * CIj + (1 – a) * (1 – NDIj) (2)

Equation 2 shows how to compute the perfor-
mance index of the generic client j at the end of
each training round.

The proposed SDN-assisted Delay/Computa-
tional-resources client Selection Strategy (DCSS)
works as follows:
• The selection process begins with all N inter-

ested clients that send the orchestrator
a request to participate in an FL session,

FIGURE 1. The proposed SDN-assisted FL system.

FL Clients

Local model training FL Server

FL Client
Selection

Global model aggregation

IEEE Communications Magazine • Accepted for Publication 4

accompanied by information on the avail-
able computational resources (Free Memory
and CPU).

• The list of interested clients is also forwarded
by the orchestrator to the SDN controller,
which proceeds to estimate the instanta-
neous delays of each client and sends them
back to the orchestrator.

• The orchestrator is now capable of comput-
ing the PI for each client and selecting the
M N clients with the highest performance
index to run the first round of the training
process.

• Once the FL process starts, the SDN control-
ler proceeds to perform a double measure-
ment in each FL round. On the one hand,
it continuously observes the selected clients
and collects their delay parameters on the
client-server paths. On the other hand, it esti-
mates the path delay between each of the
(N-M) clients that do not take part in train-
ing in the current round, using a background
ping mechanism.

• Whenever an FL round is completed, the
orchestrator receives information from cli-
ents regarding their current availability of
computing resources. It also receives from
the SDN controller information on the aver-
age value of the delays on the client-server
paths of the M clients involved in the pre-
vious FL round and on the estimated delay
for the (N-M) that did not take part in it. It
uses this updated information to make a new
selection on the entire set of N devices using

the previously illustrated criterion.
• The orchestrator sends back to the SDN

controller the update on which clients have
been selected for the new round to allow it
to proceed with its new estimates and mea-
surements.

PerformAnce evAluAtIon
This section describes a study aimed at providing
a proof-of-concept of the proposed SDN-assisted
client selection technique.

The emulation environment used for the study
is GNS3 (Graphical Network Simulator version 3)
(freely downloadable at https://www.gns3.com/).

In this environment, a test network was used
with a multi-level topology shown in Fig. 2 which
includes Open vSwitches (OVSs), labeled with
Sj, connected to each other by links with a nom-
inal capacity of 100Mb/s, and controlled by an
ODL (OpenDaylight) SDN controller. On top of
the controller an application is implemented to
perform Dynamic Routing and, in addition, imple-
ment the client monitoring and data exchange
functions with the FL controller described in
the previous section. Note that the topology is
designed to allow multiple choices of routes from
each client to the server.

As for the hosts, note that eight of them play
the role of clients (labeled C1…C8); while others
(labeled O1…O8) are implemented as specific
virtual machines in VirtualBox and exported into
GNS3 to generate variable background traffic
used to load links. Readers find the characteristics
of all the devices used for our proof-of-concept

FIGURE 2. Proof-of-Concept network topology.

IEEE Communications Magazine • Accepted for Publication5

described in Table 1.

sImulAtIon AssumPtIons
Without loss of generality, the results shown in
this article focus on an FL process based on the
FedAvg algorithm [15] is implemented via the
well-known Flower FL framework (available at
https://flower.dev/), consisting of 40 evolution
rounds, each consisting of 2 epochs. The trained
neural network is one of the most widely used in
the literature, namely DenseNet121 neural net-
work (33 MB in size with 8.1 million hyper-param-
eters), using a well-known dataset, CIFAR-10. The
reference architecture is implemented on an HP
Enterprise Proliant DL560 Gen10 hardware plat-
form, equipped with 2x Intel Xeon-Gold 6225N
processors (2.3GHz and 24 cores) and 256GB
of RAM.

In the selection phase, N clients join the fed-
erated learning process and the client selection
strategy will select the subset of M N best
performing clients; furthermore, in each round
the client selection strategy is executed again to
replace any less performing clients.

The core network is loaded by additional
background data traffic so that clients experience
different delays in data traffic. To flexibly test all
proposed features, we use traffic profile config-
urations that dynamically overload client paths
by suitably configuring network devices (O1…
O8) using the iperf tool to transmit data traffic
between them via UDP connections. This allows
us to test the reaction and adaptation of the
SDN-assisted client selection scheme to changes
in traffic and related overloaded network links.

In particular we have defined an overload traf-
fic profile, in which the two available links of each
virtual switch in the third level of the tested net-
work topology, are periodically (i.e., every 500s)
overloaded. This causes congestion for clients
connected to these switches on all available paths
to the server. The periodic overload sequence is
as follows:
• First period — links S3 S7 and S4 S7
• Second period — links S5 S9 and S6 S9

• Third period — links S3 S8 and S4 S8
• Fourth period — links S5 S10 and S6 S10.

Simulations are performed with both random
and SDN-assisted client selection algorithms,
always asked to choose six out of eight clients in
each round. The random algorithm selects clients
randomly and can thus also include clients with
overloaded paths. For the illustrated experiments
we refer to a set of 8 clients whose category is
randomly chosen, each connected to a switch of
the third level of the topology.

To validate the SDN-assisted Delay/Computa-
tional-Resources client Selection Strategy (DCSS)
different data rates (i.e., 40Mb/s, 60Mb/s, and
80Mb/s) are generated to emulate the overload
traffic profile consisting of four periods of 500
seconds each. Additionally, three client categories
(high performance, medium performance and
low performance) have been implemented, based
on the memory and CPU characteristics reported
in Table 1. Clients with different hardware charac-
teristics are uniformly distributed.

The a parameter in equation Eq. 2 is set to 0,
0.35, 0.7, and 1 during different tests. In this way,
the contributions of computation capability and
delay are weighted differently from time to time,
with the aim of discovering the most suitable a
value with respect to the load conditions of the
network. When a = 0 it means that the selection
strategy is based exclusively on client delays; on
the other hand, when a = 1, the clients are select-
ed solely based on their computational and mem-
ory resources, ignoring delay.

PerformAnce metrIcs
Well-known and widely adopted metrics in
machine learning are used to evaluate the perfor-
mance of the learning process, namely Accuracy
and Loss.

In short, the former expresses the percentage
of success in predicting a value equal to the true
value and is therefore appropriate to measure
the learning model performance. While the latter
typically represents a measure of the error made
by the ML model (in other words, the difference
between model predictions and real data). Both
performance metrics are implemented in the
Flower platform and computed on the server side
at the end of each federated learning round.

It is also important to evaluate the “price to
pay” for using the proposed mechanism. To
this end, the signalling overhead in terms of the
amount of additional control data packets trav-
eling from/to the SDN controller is evaluated.
This metric is extremely relevant as it can help
understand whether the actual impact of network
resource orchestration on the tested SDN-based
FL framework is such that it is worth introducing
it or not.

Proof-of-concePt results
This section illustrates the results of the conduct-
ed test campaign aimed at evaluating the actual
convenience, in scenarios with heterogeneous
clients, of using Delay/Computational-resourc-
es Selection Strategy (DCSS) instead of selection
schemes solely based either on experienced delay
or on client’s computational resources. As a basic
benchmark, results relating to a scheme based on
fully random choices are also shown.

TABLE 1. Network devices specifications.

Network Devices CPU
cores

RAM
(GB)

CONTROLLER 8 16

SERVER 8 8

Virtual Switches (S1…S10) 4 4

Other virtual devices (O1…O8) 2 4

Heterogeneous Clients (C1…C8)
Cat 1 – Low
Cat 2 – Medium
Cat 3 – High

2
4
6

2
4
6

TABLE 2. Delay/Computational-resources selection strategy: convergence time reduction.

Overloading Rate
Convergence Time Reduction (sec)

a = 0 a = 0.35 a = 0.7 a = 1.0

40 Mb/s 0 558.43 1035.40 366.47

60 Mb/s 282.64 1760.86 1091.52 0

80 Mb/s 85.04 1140.57 729.87 0

IEEE Communications Magazine • Accepted for Publication 6

It is evident that scenarios considering both
delay and computational/memory resources (a =
0.35 and a = 0.7) consistently outperform those
that focus solely either on delay (a = 0) or on
computational/memory resources (a = 1). Howev-
er, as expected, as the overload traffic increases,
we observe that it becomes necessary to increase
the weight of delay component (i.e., reduce a)
because the delay over the paths between FL
Server and FL Clients becomes more significant
than the one introduced by the training process.
Table 2 shows the convergence time reduction
comparing to the worst case for each scenario.

The specific trend of the Accuracy and Loss
for the FL process is shown in Fig. 3. In the most
demanding communication scenario with high
overload network conditions (i.e., 80Mb/s), it is
possible to appreciate a significant reduction in
times of approximately 30 percent in the distrib-
uted FL training process thanks to the coupled
use of both SDN-assisted routing and DCSS client
selection strategy .

Figure 4a shows the values of the average
amount of control data that the controller sends
over time; we measured these data over the
whole rounds of the FL process (40 rounds) and
averaged them.

It is worth noting that, even in cases where nei-
ther SDN-assisted dynamic client-to-server routing
nor DCSS client selection strategies are used, the
SDN controller is still generating additional con-
trol data. This expected overhead is due to the
presence of an SDN controller implementing its
standard procedures in our test network.

As expected, the overhead, in terms of control
data packets, increases when using the SDN-as-
sisted DCSS algorithm under all simulated over-
load traffic conditions; however, the measured
average overhead data rate is quite low (e.g.,
approximately 1.3Mb/s with 80Mb/s of overhead
traffic). This reassuring trend further confirms that
the additional control overhead, generated by the
SDN-assisted FL client selection strategy, is high-
ly acceptable and only weakly depends on the
amount of data traffic overhead on the network
links.

Finally, Fig. 4b shows the computational over-

head of the controller, in terms of percentage
increase in memory and CPU usage to implement
the DCSS strategy. What is shown is obtained by
sampling the RAM and CPU usage in the SDN
controller every second and then averaging the
sample values over the entire working time.

It can be observed that having the SDN con-
troller carry out the tasks of supporting the DCSS
selection strategy in addition to standard routing,

FIGURE 3. Results for 80Mb/s overload scenario: a) Accuracy of delay/computational-resources client selection strategy with and without SDN-assisted routing; b) Loss of delay/computational-re-
sources client selection strategy with and without SDN-assisted routing.

0 1000 2000 3000 4000 5000 6000
TIME (sec)

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Ac

cu
ra

cy

alpha = 0
alpha = 0.35
alpha = 0.7
alpha = 1
No SDN & Random Selection

Time reduction 30%

Time reduction 22,7%

0 1000 2000 3000 4000 5000 6000
TIME (sec)

0.4

0.5

0.6

0.7

0.8

0.9

LO
SS

alpha = 0
alpha = 0.35
alpha = 0.7
alpha = 1
No SDN & Random Selection

FIGURE 4. Overhead due to the proposed techniques: a) Signalling overhead; b) Computational overhead at the SDN
controller due to the DCSS client selection.

40 60 80
Overload Scenario (Mbps)

0

500

1000

1500
O

ve
rh

ea
d

[K
bp

s]

No SDN & Random Client Selection
SDN Assisted Routing & DCSS Client Selection (alpha =0.35)

Overload Profile
40 Mbps 60 Mbps 80 Mbps

SDN controller RAM occupancy (%)
SDN assisted routing &
DCSS client selection 40.93 41.01 41.78

SDN assisted routing &
random client selection 39.71 39.75 39.35

 SDN controller CPU usage (%)
SDN assisted routing &
DCSS client selection 5.21 5.91 5.99

SDN assisted routing &
random client selection 3.43 3.6 3.75

a)

b)

IEEE Communications Magazine • Accepted for Publication7

implies an only slightly higher use of its CPU and
RAM (i.e., about 2 percent under high traffic load
conditions). This validates the hypothesis that the
computational overhead introduced by client
selection features is negligible and can be easily
supported by standard controllers.

oPen reseArch Issues
The aim of the presented research is to investi-
gate the role that SDN can play in the FL client
selection process and to assess, via initial proof-
of-concept, the benefits that could derive from
it. Much remains to be investigated. Some ideas,
exclusively linked to the role of SDN in support-
ing FL Client Selection, which do not claim to be
exhaustive, are suggested below.

Future studies could consider further elements
that distinguish clients and make them hetero-
geneous, in addition to their computation and
communication capabilities; for example, aspects
related to the extreme distribution of clients and
extreme variability and heterogeneity of the char-
acteristics of the communication channel.

Since clients in the future will increasingly con-
nect to the network wirelessly, a next step could
be to extend the proposed system to also include
the access segment and its congestion conditions.
SDN could play multiple roles, ranging from mon-
itoring the Clients’ mobility model (for example,
to seamless enable handover in multi-RAT - multi
radio access network - environments and avoid
client disconnection before completing their FL
task), up to intelligently allocating resources to
some more performing clients to make them
more attractive in the selection phase, which
involves the choice of access point, RAT used,
access time, and so on.

A further open aspect is to go beyond the
simple selection policy used for the sole purpose
of carrying out an initial proof of concept. We
could use more sophisticated client prioritization
and scheduling mechanisms that, for example,
leverage measures of their utility. This will involve
moving from model-based or data-driven utility
definitions to definitions based on the measured
utility (also with support provided by SDN) of the
entire end-to-end client-server system.

Finally, the same dynamic choice and adapta-
tion of the weights to be used in our policy or in
similar policies (for example, the importance to
attribute to each client characteristic, as system
conditions vary) could be governed by sophis-
ticated and promising reinforcement learning
techniques, to be implemented in the proposed
orchestrator and to be investigated in future
works.

conclusIon
The presented work proposed an SDN-assisted
FL client selection strategy aimed at improving
the performance of FL processes, which takes
into account both the network conditions and
the peculiarities (CPU and available memory) of
the selected clients during the entire evolution of
the learning/ training process. The initial proof-
of-concept activity conducted has demonstrated
how the proposed DCSS mechanism, thanks to
the indispensable support received from the SDN
controller in the various phases of the process,
can achieve better performances compared to

selection policies that only take capabilities into
account of heterogeneous clients or just the
delays on the paths between client and server.
It was also observed that, by carefully combin-
ing the two contributions, it is always possible to
obtain good performance when the total load
conditions on the network vary.

We are confident that the presented study can
contribute to the advancement of the state-of-the-
art in the field of FL client selection leveraging
typical paradigms of softwarized networks and
inspire several related future research activities,
some of which have been listed.

AcknoWledgment
This work was partially supported by the Euro-
pean Union under the Italian National Recovery
and Resilience Plan (NRRP) of NextGeneratio-
nEU, partnership on “Telecommunications of the
Future” (PE00000001 - program “RESTART”).

references
[1] T. Li et al., “Federated Learning: Challenges, Methods, and

Future Directions,” IEEE Signal Process. Mag., vol. 37, no. 3,
2020, pp. 50–60.

[2] M. Xu et al., “Multiagent Federated Reinforcement Learning
for Secure Incentive Mechanism in Intelligent Cyber–Physi-
cal Systems,” IEEE Internet of Things J., vol. 9, no. 22, 2022,
pp. 22,095–108.

[3] M. Chen et al., “Distributed Learning in Wireless Networks:
Recent Progress and Future Challenges,” IEEE J. Sel. Areas
Commun., vol. 39, no. 12, 2021, pp. 3579–3605.

[4] J. Xie et al., “A Survey of Machine Learning Techniques
Applied to Software Defined Networking (SDN): Research
Issues and Challenges,” IEEE Commun. Surveys & Tutorials,
vol. 21, no. 1, 2019, pp. 393–430.

[5] A. Mahmod et al., “SDN-Assisted Client Selection to Enhance
the Quality of Federated Learning Processes,” Proc. IEEE
Wireless Commun. and Networking Conf., Dubai, United
Arab Emirates, Apr. 2024, pp. 1–6.

[6] S. Abdulrahman et al., “FedMCCS: Multicriteria Client Selec-
tion Model for Optimal IoT Federated Learning,” IEEE Inter-
net of Things J., vol. 8, no. 6, Mar., 2021, pp. 4723–35.

[7] T. Huang et al., “An Efficiency-Boosting Client Selection
Scheme for Federated Learning With Fairness Guarantee,”
IEEE Trans. Parallel and Distributed Systems, vol. 32, no. 7, 1
July 2021, pp. 1552–64.

[8] Y. Wang and B. Kantarci, “A Novel Reputation-Aware Client
Selection Scheme for Federated Learning within Mobile
Environments,” Proc. IEEE 25th Int’l. Workshop on Computer
Aided Modeling and Design of Commun. Links and Net-
works, Italy, 2020, pp. 1–6.

[9] T. Huang et al., “Stochastic Client Selection for Federated
Learning With Volatile Clients,” IEEE Internet of Things J., vol.
9, no. 20, 15 Oct. 2022, pp. 20,055–70.

[10] Z. Chai et al., “Tifl: A Tier-Based Federated Learning Sys-
tem,” Proc. 29th Int’l. Symposium on High-Performance Par-
allel and Distributed Computing, 2020, pp. 125–36.

[11] E. Seo et al., “Auction-Based Federated Learning Using
Software-Defined Networking for Resource Efficiency,” Proc.
2021 17th Int’l. Conf. Network and Service Management,
Izmir, Turkey, 2021, pp. 42–48.

[12] P. Tam, S. Math, and S. Kim, “Efficient Resource Slicing
Scheme for Optimizing Federated Learning Communica-
tions in Software-Defined IoT Networks,” J. Internet Comput-
ing and Services, vol. 22, no. 5, Oct. 2021, pp. 27–33.

[13] J. Mills et al., “Communication-Efficient Federated Learning
for Wireless Edge Intelligence in IoT,” IEEE Internet of Things
J., vol. 7, no. 7, July 2020, pp. 5986–94.

[14] V. Balasubramanian et al., “Intelligent Resource Manage-
ment at the Edge for Ubiquitous IoT: An SDN-Based Fed-
erated Learning Approach,” IEEE Network, vol. 35, no. 5,
Sept./Oct. 2021, pp. 114–21.

[15] B. McMahan et al., “Communication-Efficient Learning
of Deep Networks From Decentralized Data,” Proc. Int’l.
Conf. Artificial Intelligence and Statistics, 2017, vol. 54, pp.
1273–82.

bIogrAPhIes
AhmAd mAhmod received the B.Sc. degree in Communication
and Electronic Engineering from Tishreen University, Syria and a
Master in Telecommunication Engineering: Smart Sensing, Com-

Since clients in the future
will increasingly connect
to the network wirelessly,

a next step could be to
extend the proposed system

to also include the access
segment and its congestion

conditions.

IEEE Communications Magazine • Accepted for Publication 8

puting and Networking from the University of Calabria, Italy.
He is currently pursuing the Ph.D. degree with the University of
Strasbourg, France. He is a member of the Network Research
Group, ICube Lab. His research interests focus on software-de-
fined networks, the Internet of Things, and federated learning.

PAsquAle PAce received his Ph.D. in Information Engineering
in 2005 from the University of Calabria, Italy. He is currently an
Assistant Professor in telecommunications with the Department
of Computer Engineering, Modeling, Electronics and Systems
(DIMES), University of Calabria, Italy. He has authored more
than 100 papers in international journals, conferences, and
books. His research interests include cognitive and opportunistic
networks, sensor and self-organized networks, software-defined
networks and interoperability issues of IoT platforms and devic-
es.

Antonio ierA is full professor of Telecommunications at the
University of Calabria, Italy. He holds a Master in Information
Technology from CEFRIEL/Politecnico di Milano and a PhD
from the University of Calabria. His research interests include
next generation mobile and wireless systems, and the Internet of
Things. He is currently editor-in-chief of the Computer Network
Journal, Elsevier.

