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Abstract
In an ever-increasing number of contexts, it has 

now become common to use federated learning 
(FL) techniques, through which several heteroge-
neous devices cooperate in a distributed manner 
to increase the effectiveness in training machine 
learning (ML) models while maintaining confi-
dentiality of the respective data. The federated 
learning process shows performance levels that 
are highly dependent, not only on the data avail-
able to each participant in the process, but also 
on the choice of devices that act as clients from 
time to time and that collaborate with each other. 
So far, much of the literature has focused on a 
client selection that considers the device compu-
tational/memory capabilities and the end-to-end 
delays of the process. However, no one so far has 
fully exploited the intrinsic capabilities of current 
and future programmable networks. This article 
introduces, for the first time, an approach to client 
selection that is augmented and made more effec-
tive by a joint orchestration carried out by the FL 
server and the controller of an software-defined 
networking (SDN) network. It will be demonstrat-
ed through a performance evaluation campaign 
that the use of typical SDN principles also in the 
client selection phase leads to significant advan-
tages in terms of effectiveness and efficiency.

Introduction
Recently, federated learning (FL) is attracting 
growing interest, being an efficient paradigm 
capable of achieving similar results to centralized 
learning but through a fully distributed process 
[1]. According to FL, in each round the learning 
model is trained with local data available at remote 
devices participating in the process (the so-called 
FL Clients) and only the resulting model parameters 
are transmitted to a central server (the so-called FL 
Server). This latter aggregates them to obtain a more 
performing model and returns the newly updated 
parameters to all clients for the next training round. 
The procedure is repeated for several cycles until 
the desired level of accuracy is achieved. In this way, 
data transmission costs are significantly reduced and 
user privacy is protected [2].

The shorter the iterations, the better perfor-
mance the FL process can achieve [3]. Consid-
ering that the FL server cannot aggregate the 
global model until all clients have successfully 
delivered their parameters, there are two main 
causes of reduced effectiveness of the entire pro-

cess (for the same available dataset). The first is 
the involvement of FL client devices with low pro-
cessing capacity and memory. The second main 
reason for process inefficiency is the presence of 
high-performance devices which however have 
poor quality connections or a congested path to 
the server. In both cases the central server will 
have to wait for stragglers (i.e., devices that delay 
FL training), which could significantly reduce the 
convergence time to the desired model accura-
cy value. Therefore, carrying out effective client 
selection that avoids the participation of stragglers 
in the FL process becomes crucial to speed up the 
training process.

The literature is rich in proposals addressing 
the issue of Client Selection in a very sophisticat-
ed and effective way. Most of them come from 
the data science and ML research communities 
and approach Client Selection by primarily focus-
ing on the device computational resources and 
on the nature of the local data used for training. 
Equally interesting works, reflecting the contri-
bution of the wireless communications research 
community, address the problem also consider-
ing the availability of communication resources at 
the air interface. Instead, solutions addressing the 
possible impact that the delay on Client-Server 
network segments could have on client selection, 
which the networking scientific community con-
tributes to, do not appear to have been adequate-
ly studied yet.

At the same time, new available paradigms 
in software-based networks such as emerg-
ing 5G and 6G ones, first and foremost that of 
Software-Defined Networking (SDN), have the 
potential to provide strong support to federated 
learning processes [4]. It is not just about creating 
a sort of overlay network that constantly optimiz-
es the paths followed by client-server traffic and 
vice versa, which is part of the standard purposes 
of SDN. Rather, an interesting and still missing 
contribution, as far as we know, consists in eval-
uating the potential advantage of leveraging SDN 
within the choice and continuous dynamic updat-
ing of FL clients. This is with a view to maintaining 
the distributed learning process at constantly high 
levels of effectiveness, efficiency and quality.

In a previous article [5] we began to investigate 
the performance achievable from SDN-assisted 
client selection in the presence of homogeneous 
clients. This allowed us to evaluate the positive 
effects of introducing SDN into the FL selection 
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process in the presence of clients that all have 
the same computational performance. In this way, 
since differences in computational power and cli-
ent memory did not come into play, the benefit 
of the reduction in network delays on the perfor-
mance of the FL process clearly emerged.

In this article, we go further and improve the 
performance of the entire FL process, considering 
the following aspects not yet the subject of any 
work in the literature, to the best of the authors’ 
knowledge:
•	 When carrying out client selection round 

after round, consider in a joint manner 
both the available computational resources 
(Memory and CPU) of each client and the 
conditions of the network links that connect 
each of them to the server.

•	 Implement mechanisms whereby SDN enters 
the selection process by providing the server 
with additional information from all poten-
tial clients (both the one already engaged 
in each round and the others not currently 
engaged but available) over their optimized 
paths.

•	 Exploit this information, by the FL server/
orchestrator, together with that relating 
to the computational resources to decide 
whether to confirm the clients in the subse-
quent round or replace them with other cli-
ents estimated to be better performing also 
considering the network crossing delay.

•	 Assess SDN’s ability to improve the conver-
gence times of the FL process and quantify 
the computation and traffic burden added to 
the system and controller.
Specifically, the work is organized as follows. 

Following the brief overview of reference works in 
the next section. Then we describe the reference 
system for our study. Following that we introduce 
the proposed client selection policy. A proof-of-
concept test campaign with the results obtained 
follows next. Finally, we highlight possible open 
research issues and report our conclusions.

Related Works
For some years now, several works have appeared 
in the literature that propose more efficient Client 
Selection methods than those simply based on 
random or quasi-random criteria. Some contri-
butions, like the one in [6], propose a multicri-
teria-based approaches to FL client selection by 
accounting for CPU, memory, energy, and time. 
Other contributions also add as a criterion of 
choice the guarantee of fairness to the clients [7] 
and the reputation of the clients themselves [8].

Another interesting work proposes to increase 
the training efficiency, as well as the final model 
performance, through a stochastic client selection 
scheme [9]. The authors of [10], instead divide 
clients into tiers based on their training perfor-
mance and select clients from the same tier in 
each training round to mitigate the straggler prob-
lem caused by heterogeneity in resource and data 
quantity.

The examples shown are representative of a 
large body of research that mainly addresses the 
problem of FL client selection by focusing on het-
erogeneity of local data and terminal computing 
resources. Some also consider efficiency aspects 
in communication but mainly limiting themselves 

to the wireless segment that connects IoT devic-
es to the network. Our approach instead aims 
precisely to evaluate the influence that any bot-
tlenecks in the fixed segment of a 5G/6G soft-
warized network can have on the process and 
how to make the latter more efficient by giving a 
role to the SDN controller within the client selec-
tion process.

Research on the role of SDN in supporting 
distributed learning is at the initial embryonic 
stage. For example, in [11] the authors propose 
the use of an SDN controller to create an overlay 
network in which the FL server and clients can 
perform auction bidding and product provision. 
Differently, in [12] an efficient resource slicing 
scheme for optimizing federated learning in soft-
ware-defined IoT is proposed. In [13] it is suggest-
ed that SDN could be used to make IoT gateways 
alleviate some of the distributed ML issues by col-
lecting data from local IoT devices and cooper-
ate with nearby edge servers. In a scenario with 
mobile IoT devices involved in FL processes, the 
authors of [14] propose a clever content place-
ment supported by SDN controllers capable, in 
the presence of multiple points of computation 
and caching, to control the data plane and enable 
seamless communications while maintaining QoS.

Giving a role to the SDN controller within the 
client selection process, as far as we know, is a 
concept not addressed so far in the literature. 
And this is precisely the main objective of our 
research, in line with the emerging interest in the 
“Network for AI” paradigm, as opposed to the 
more traditional approach of “AI for networks”.

The Reference System
The schematic reference system architecture 
underlying our proposal is shown in Fig. 1. The 
proposed selection process supported by SDN 
is implemented by what we indicate in the figure 
as the orchestration module. The latter includes 
the functions traditionally implemented by the FL 
server (it could also coincide with its augmented 
version), namely the training of the local models 
received by the heterogeneous devices and the 
creation of the global model to be redistributed to 
them. It also implements additional functions that 
enable the interaction with a Network Orchestra-
tor (SDN Controller) and the selection of clients 
with the support of the latter, as illustrated in the 
next section.

The data exchange between FL Orchestrator 
and Network Controller is continuous. In one 
direction the Controller sends information on the 
delays relating to the paths on which the data of 
the active clients travel, as well as estimates on 
the delays of the remaining clients not currently 
involved in the process. The information relating 
to the outcome of the client selection travels in 
the opposite direction, allowing the Network Con-
troller to dynamically select and maintain the best 
paths for the selected clients and to estimate the 
delays of clients that are temporarily inactive but 
potentially selectable later.

SDN-Assisted Client Selection
Several sophisticated client selection schemes 
could be considered to jointly exploit informa-
tion received from the devices (relating to their 
capabilities) and from the SDN network controller 

Several sophisticated client 
selection schemes could be 
considered to jointly exploit 
information received from 

the devices (relating to 
their capabilities) and from 
the SDN network controller 

(relating to the conditions of 
the network and the select-

ed paths). 
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(relating to the conditions of the network and the 
selected paths). This is not within the scope of 
this work, since what we intend to provide is a 
proof of concept that the proposed approach can 
show interesting advantages in the face of limited 
additional costs. Therefore, for now we will use a 
very elementary scheme that relates the two con-
tributions mentioned, reserving the right to delve 
deeper into this specific aspect in future works.

We simply rely on a linear combination of two 
indices. A first index is the Computational Index 
(CI), calculated for each client as a weighted aver-
age of the resources that the device can make 
available for the learning process. It takes into 
account the contributions of CPU and free mem-
ory FM which, without any loss of generality, have 
the same weight in this proof-of-concept study; 
future investigations will be dedicated to discov-
ering the effects of a dynamic choice of these 
parameters too. This index can give a rough esti-
mate of the goodness of a device in terms of pre-
cision and computational speed. A device with a 
high-performance and less busy CPU is potentially 
more capable of performing a greater number 
of operations while taking less time to perform 
parameter updates; it can store a larger training 
data set if its memory is larger; if the charge level 
of its battery is high the performance curve can 
reach the maximum to obtain greater precision. 
The higher the index value, the better the device’s 
ability to perform fast and accurate computations.

As shown in Eq. 1, the processing capacity of 
the generic client j is computed by considering 
the ratio between the CPUs available in the cli-
ent compared to the maximum number of CPUs 
available in the best performing client and their 
percentage of utilization.

𝐶𝐶𝐶𝐶𝐶𝐶! =
#	𝑜𝑜𝑜𝑜	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!
𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 21 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!7;	

				0 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶! ≤ 1	
		  (1)
A similar calculation is made for the second 

contribution to the CI index, which is the available 
free memory (FM) in each client normalized to 
the maximum amount of RAM available in the 
most powerful client.

Furthermore, for each device a Normalized 
Delay Index (NDI) will also be used to account 
for the expected delay to deliver the update 
to the Server, based both on the value of the 
throughput at the device interface and on the 
network resources available along the path (of 
which the SDN Controller has an always updat-
ed view through the information exchanged with 
the Openflow switches). NDI is expressed as the 
normalized communication delay of a given client 
with respect to the maximum delay experienced 
by the clients during the previous training round.

By appropriately combining the two indexes, 
an overall performance metric PI can be obtained, 
which uniquely indicates for each device j how 
efficient it can work in terms of computational 
capacity and (predicted) network conditions. This 
overall metric can drive the choice of the best sub-
set of devices to be selected at each stage of the 
FL process. A coefficient a  {[0, 1]} that weights 
the two parts of the index PI can be chosen, from 
time to time, to give greater weight either to the 
computational index (CI), if the performance of 
each device is to prevail, or to the normalized 
delay index (NDI), thus involving devices which 
experience a lower communication delay.

PIj = a * CIj + (1 – a) * (1 – NDIj)		  (2)

Equation 2 shows how to compute the perfor-
mance index of the generic client j at the end of 
each training round.

The proposed SDN-assisted Delay/Computa-
tional-resources client Selection Strategy (DCSS) 
works as follows:
• The selection process begins with all N inter-

ested clients that send the orchestrator 
a request to participate in an FL session, 

FIGURE 1. The proposed SDN-assisted FL system.
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accompanied by information on the avail-
able computational resources (Free Memory 
and CPU).

• The list of interested clients is also forwarded 
by the orchestrator to the SDN controller, 
which proceeds to estimate the instanta-
neous delays of each client and sends them 
back to the orchestrator.

• The orchestrator is now capable of comput-
ing the PI for each client and selecting the 
M  N clients with the highest performance 
index to run the first round of the training 
process.

• Once the FL process starts, the SDN control-
ler proceeds to perform a double measure-
ment in each FL round. On the one hand, 
it continuously observes the selected clients 
and collects their delay parameters on the 
client-server paths. On the other hand, it esti-
mates the path delay between each of the 
(N-M) clients that do not take part in train-
ing in the current round, using a background 
ping mechanism.

• Whenever an FL round is completed, the 
orchestrator receives information from cli-
ents regarding their current availability of 
computing resources. It also receives from 
the SDN controller information on the aver-
age value of the delays on the client-server 
paths of the M clients involved in the pre-
vious FL round and on the estimated delay 
for the (N-M) that did not take part in it. It 
uses this updated information to make a new 
selection on the entire set of N devices using 

the previously illustrated criterion.
• The orchestrator sends back to the SDN 

controller the update on which clients have 
been selected for the new round to allow it 
to proceed with its new estimates and mea-
surements.

Performance Evaluation
This section describes a study aimed at providing 
a proof-of-concept of the proposed SDN-assisted 
client selection technique.

The emulation environment used for the study 
is GNS3 (Graphical Network Simulator version 3) 
(freely downloadable at https://www.gns3.com/).

In this environment, a test network was used 
with a multi-level topology shown in Fig. 2 which 
includes Open vSwitches (OVSs), labeled with 
Sj, connected to each other by links with a nom-
inal capacity of 100Mb/s, and controlled by an 
ODL (OpenDaylight) SDN controller. On top of 
the controller an application is implemented to 
perform Dynamic Routing and, in addition, imple-
ment the client monitoring and data exchange 
functions with the FL controller described in 
the previous section. Note that the topology is 
designed to allow multiple choices of routes from 
each client to the server.

As for the hosts, note that eight of them play 
the role of clients (labeled C1…C8); while others 
(labeled O1…O8) are implemented as specific 
virtual machines in VirtualBox and exported into 
GNS3 to generate variable background traffic 
used to load links. Readers find the characteristics 
of all the devices used for our proof-of-concept 

FIGURE 2. Proof-of-Concept network topology.
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described in Table 1.

Simulation Assumptions
Without loss of generality, the results shown in 
this article focus on an FL process based on the 
FedAvg algorithm [15] is implemented via the 
well-known Flower FL framework (available at 
https://flower.dev/), consisting of 40 evolution 
rounds, each consisting of 2 epochs. The trained 
neural network is one of the most widely used in 
the literature, namely DenseNet121 neural net-
work (33 MB in size with 8.1 million hyper-param-
eters), using a well-known dataset, CIFAR-10. The 
reference architecture is implemented on an HP 
Enterprise Proliant DL560 Gen10 hardware plat-
form, equipped with 2x Intel Xeon-Gold 6225N 
processors (2.3GHz and 24 cores) and 256GB 
of RAM.

In the selection phase, N clients join the fed-
erated learning process and the client selection 
strategy will select the subset of M  N best 
performing clients; furthermore, in each round 
the client selection strategy is executed again to 
replace any less performing clients.

The core network is loaded by additional 
background data traffic so that clients experience 
different delays in data traffic. To flexibly test all 
proposed features, we use traffic profile config-
urations that dynamically overload client paths 
by suitably configuring network devices (O1…
O8) using the iperf tool to transmit data traffic 
between them via UDP connections. This allows 
us to test the reaction and adaptation of the 
SDN-assisted client selection scheme to changes 
in traffic and related overloaded network links.

In particular we have defined an overload traf-
fic profile, in which the two available links of each 
virtual switch in the third level of the tested net-
work topology, are periodically (i.e., every 500s) 
overloaded. This causes congestion for clients 
connected to these switches on all available paths 
to the server. The periodic overload sequence is 
as follows:
•	 First period — links S3  S7 and S4  S7
•	 Second period — links S5  S9 and S6  S9

•	 Third period — links S3  S8 and S4  S8
•	 Fourth period — links S5  S10 and S6  S10.

Simulations are performed with both random 
and SDN-assisted client selection algorithms, 
always asked to choose six out of eight clients in 
each round. The random algorithm selects clients 
randomly and can thus also include clients with 
overloaded paths. For the illustrated experiments 
we refer to a set of 8 clients whose category is 
randomly chosen, each connected to a switch of 
the third level of the topology.

To validate the SDN-assisted Delay/Computa-
tional-Resources client Selection Strategy (DCSS) 
different data rates (i.e., 40Mb/s, 60Mb/s, and 
80Mb/s) are generated to emulate the overload 
traffic profile consisting of four periods of 500 
seconds each. Additionally, three client categories 
(high performance, medium performance and 
low performance) have been implemented, based 
on the memory and CPU characteristics reported 
in Table 1. Clients with different hardware charac-
teristics are uniformly distributed.

The a parameter in equation Eq. 2 is set to 0, 
0.35, 0.7, and 1 during different tests. In this way, 
the contributions of computation capability and 
delay are weighted differently from time to time, 
with the aim of discovering the most suitable a 
value with respect to the load conditions of the 
network. When a = 0 it means that the selection 
strategy is based exclusively on client delays; on 
the other hand, when a = 1, the clients are select-
ed solely based on their computational and mem-
ory resources, ignoring delay.

Performance Metrics
Well-known and widely adopted metrics in 
machine learning are used to evaluate the perfor-
mance of the learning process, namely Accuracy 
and Loss.

In short, the former expresses the percentage 
of success in predicting a value equal to the true 
value and is therefore appropriate to measure 
the learning model performance. While the latter 
typically represents a measure of the error made 
by the ML model (in other words, the difference 
between model predictions and real data). Both 
performance metrics are implemented in the 
Flower platform and computed on the server side 
at the end of each federated learning round.

It is also important to evaluate the “price to 
pay” for using the proposed mechanism. To 
this end, the signalling overhead in terms of the 
amount of additional control data packets trav-
eling from/to the SDN controller is evaluated. 
This metric is extremely relevant as it can help 
understand whether the actual impact of network 
resource orchestration on the tested SDN-based 
FL framework is such that it is worth introducing 
it or not.

Proof-of-Concept Results
This section illustrates the results of the conduct-
ed test campaign aimed at evaluating the actual 
convenience, in scenarios with heterogeneous 
clients, of using Delay/Computational-resourc-
es Selection Strategy (DCSS) instead of selection 
schemes solely based either on experienced delay 
or on client’s computational resources. As a basic 
benchmark, results relating to a scheme based on 
fully random choices are also shown.

TABLE 1. Network devices specifications.

Network Devices CPU 
cores

RAM 
(GB)

CONTROLLER 8 16

SERVER 8 8

Virtual Switches (S1…S10) 4 4

Other virtual devices (O1…O8) 2 4

Heterogeneous Clients (C1…C8)  
Cat 1 – Low  
Cat 2 – Medium  
Cat 3 – High

 
2 
4 
6

 
2 
4 
6

TABLE 2. Delay/Computational-resources selection strategy: convergence time reduction.

Overloading Rate
Convergence Time Reduction (sec)

a = 0 a = 0.35 a = 0.7 a = 1.0

40 Mb/s 0 558.43 1035.40 366.47

60 Mb/s 282.64 1760.86 1091.52 0

80 Mb/s 85.04 1140.57 729.87 0
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It is evident that scenarios considering both 
delay and computational/memory resources (a = 
0.35 and a = 0.7) consistently outperform those 
that focus solely either on delay (a = 0) or on 
computational/memory resources (a = 1). Howev-
er, as expected, as the overload traffic increases, 
we observe that it becomes necessary to increase 
the weight of delay component (i.e., reduce a) 
because the delay over the paths between FL 
Server and FL Clients becomes more significant 
than the one introduced by the training process. 
Table 2 shows the convergence time reduction 
comparing to the worst case for each scenario.

The specific trend of the Accuracy and Loss 
for the FL process is shown in Fig. 3. In the most 
demanding communication scenario with high 
overload network conditions (i.e., 80Mb/s), it is 
possible to appreciate a significant reduction in 
times of approximately 30 percent in the distrib-
uted FL training process thanks to the coupled 
use of both SDN-assisted routing and DCSS client 
selection strategy .

Figure 4a shows the values of the average 
amount of control data that the controller sends 
over time; we measured these data over the 
whole rounds of the FL process (40 rounds) and 
averaged them.

It is worth noting that, even in cases where nei-
ther SDN-assisted dynamic client-to-server routing 
nor DCSS client selection strategies are used, the 
SDN controller is still generating additional con-
trol data. This expected overhead is due to the 
presence of an SDN controller implementing its 
standard procedures in our test network.

As expected, the overhead, in terms of control 
data packets, increases when using the SDN-as-
sisted DCSS algorithm under all simulated over-
load traffic conditions; however, the measured 
average overhead data rate is quite low (e.g., 
approximately 1.3Mb/s with 80Mb/s of overhead 
traffic). This reassuring trend further confirms that 
the additional control overhead, generated by the 
SDN-assisted FL client selection strategy, is high-
ly acceptable and only weakly depends on the 
amount of data traffic overhead on the network 
links.

Finally, Fig. 4b shows the computational over-

head of the controller, in terms of percentage 
increase in memory and CPU usage to implement 
the DCSS strategy. What is shown is obtained by 
sampling the RAM and CPU usage in the SDN 
controller every second and then averaging the 
sample values over the entire working time.

It can be observed that having the SDN con-
troller carry out the tasks of supporting the DCSS 
selection strategy in addition to standard routing, 

FIGURE 3. Results for 80Mb/s overload scenario: a) Accuracy of delay/computational-resources client selection strategy with and without SDN-assisted routing; b) Loss of delay/computational-re-
sources client selection strategy with and without SDN-assisted routing.
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implies an only slightly higher use of its CPU and 
RAM (i.e., about 2 percent under high traffic load 
conditions). This validates the hypothesis that the 
computational overhead introduced by client 
selection features is negligible and can be easily 
supported by standard controllers.

Open Research Issues
The aim of the presented research is to investi-
gate the role that SDN can play in the FL client 
selection process and to assess, via initial proof-
of-concept, the benefits that could derive from 
it. Much remains to be investigated. Some ideas, 
exclusively linked to the role of SDN in support-
ing FL Client Selection, which do not claim to be 
exhaustive, are suggested below.

Future studies could consider further elements 
that distinguish clients and make them hetero-
geneous, in addition to their computation and 
communication capabilities; for example, aspects 
related to the extreme distribution of clients and 
extreme variability and heterogeneity of the char-
acteristics of the communication channel.

Since clients in the future will increasingly con-
nect to the network wirelessly, a next step could 
be to extend the proposed system to also include 
the access segment and its congestion conditions. 
SDN could play multiple roles, ranging from mon-
itoring the Clients’ mobility model (for example, 
to seamless enable handover in multi-RAT - multi 
radio access network - environments and avoid 
client disconnection before completing their FL 
task), up to intelligently allocating resources to 
some more performing clients to make them 
more attractive in the selection phase, which 
involves the choice of access point, RAT used, 
access time, and so on.

A further open aspect is to go beyond the 
simple selection policy used for the sole purpose 
of carrying out an initial proof of concept. We 
could use more sophisticated client prioritization 
and scheduling mechanisms that, for example, 
leverage measures of their utility. This will involve 
moving from model-based or data-driven utility 
definitions to definitions based on the measured 
utility (also with support provided by SDN) of the 
entire end-to-end client-server system.

Finally, the same dynamic choice and adapta-
tion of the weights to be used in our policy or in 
similar policies (for example, the importance to 
attribute to each client characteristic, as system 
conditions vary) could be governed by sophis-
ticated and promising reinforcement learning 
techniques, to be implemented in the proposed 
orchestrator and to be investigated in future 
works.

Conclusion
The presented work proposed an SDN-assisted 
FL client selection strategy aimed at improving 
the performance of FL processes, which takes 
into account both the network conditions and 
the peculiarities (CPU and available memory) of 
the selected clients during the entire evolution of 
the learning/ training process. The initial proof-
of-concept activity conducted has demonstrated 
how the proposed DCSS mechanism, thanks to 
the indispensable support received from the SDN 
controller in the various phases of the process, 
can achieve better performances compared to 

selection policies that only take capabilities into 
account of heterogeneous clients or just the 
delays on the paths between client and server. 
It was also observed that, by carefully combin-
ing the two contributions, it is always possible to 
obtain good performance when the total load 
conditions on the network vary.

We are confident that the presented study can 
contribute to the advancement of the state-of-the-
art in the field of FL client selection leveraging 
typical paradigms of softwarized networks and 
inspire several related future research activities, 
some of which have been listed.

Acknowledgment
This work was partially supported by the Euro-
pean Union under the Italian National Recovery 
and Resilience Plan (NRRP) of NextGeneratio-
nEU, partnership on “Telecommunications of the 
Future” (PE00000001 - program “RESTART”).

References 
[1] T. Li et al., “Federated Learning: Challenges, Methods, and 

Future Directions,” IEEE Signal Process. Mag., vol. 37, no. 3, 
2020, pp. 50–60. 

[2] M. Xu et al., “Multiagent Federated Reinforcement Learning 
for Secure Incentive Mechanism in Intelligent Cyber–Physi-
cal Systems,” IEEE Internet of Things J., vol. 9, no. 22, 2022, 
pp. 22,095–108. 

[3] M. Chen et al., “Distributed Learning in Wireless Networks: 
Recent Progress and Future Challenges,” IEEE J. Sel. Areas 
Commun., vol. 39, no. 12, 2021, pp. 3579–3605. 

[4] J. Xie et al., “A Survey of Machine Learning Techniques 
Applied to Software Defined Networking (SDN): Research 
Issues and Challenges,” IEEE Commun. Surveys & Tutorials, 
vol. 21, no. 1, 2019, pp. 393–430. 

[5] A. Mahmod et al., “SDN-Assisted Client Selection to Enhance 
the Quality of Federated Learning Processes,” Proc. IEEE 
Wireless Commun. and Networking Conf., Dubai, United 
Arab Emirates, Apr. 2024, pp. 1–6. 

[6] S. Abdulrahman et al., “FedMCCS: Multicriteria Client Selec-
tion Model for Optimal IoT Federated Learning,” IEEE Inter-
net of Things J., vol. 8, no. 6, Mar., 2021, pp. 4723–35. 

[7] T. Huang et al., “An Efficiency-Boosting Client Selection 
Scheme for Federated Learning With Fairness Guarantee,” 
IEEE Trans. Parallel and Distributed Systems, vol. 32, no. 7, 1 
July 2021, pp. 1552–64. 

[8] Y. Wang and B. Kantarci, “A Novel Reputation-Aware Client 
Selection Scheme for Federated Learning within Mobile 
Environments,” Proc. IEEE 25th Int’l. Workshop on Computer 
Aided Modeling and Design of Commun. Links and Net-
works, Italy, 2020, pp. 1–6. 

[9] T. Huang et al., “Stochastic Client Selection for Federated 
Learning With Volatile Clients,” IEEE Internet of Things J., vol. 
9, no. 20, 15 Oct. 2022, pp. 20,055–70. 

[10] Z. Chai et al., “Tifl: A Tier-Based Federated Learning Sys-
tem,” Proc. 29th Int’l. Symposium on High-Performance Par-
allel and Distributed Computing, 2020, pp. 125–36. 

[11] E. Seo et al., “Auction-Based Federated Learning Using 
Software-Defined Networking for Resource Efficiency,” Proc. 
2021 17th Int’l. Conf. Network and Service Management, 
Izmir, Turkey, 2021, pp. 42–48. 

[12] P. Tam, S. Math, and S. Kim, “Efficient Resource Slicing 
Scheme for Optimizing Federated Learning Communica-
tions in Software-Defined IoT Networks,” J. Internet Comput-
ing and Services, vol. 22, no. 5, Oct. 2021, pp. 27–33. 

[13] J. Mills et al., “Communication-Efficient Federated Learning 
for Wireless Edge Intelligence in IoT,” IEEE Internet of Things 
J., vol. 7, no. 7, July 2020, pp. 5986–94. 

[14] V. Balasubramanian et al., “Intelligent Resource Manage-
ment at the Edge for Ubiquitous IoT: An SDN-Based Fed-
erated Learning Approach,” IEEE Network, vol. 35, no. 5, 
Sept./Oct. 2021, pp. 114–21. 

[15] B. McMahan et al., “Communication-Efficient Learning 
of Deep Networks From Decentralized Data,” Proc. Int’l. 
Conf. Artificial Intelligence and Statistics, 2017, vol. 54, pp. 
1273–82.

Biographies
Ahmad Mahmod received the B.Sc. degree in Communication 
and Electronic Engineering from Tishreen University, Syria and a 
Master in Telecommunication Engineering: Smart Sensing, Com-

Since clients in the future 
will increasingly connect 
to the network wirelessly, 

a next step could be to 
extend the proposed system 

to also include the access 
segment and its congestion 

conditions. 



IEEE Communications Magazine • Accepted for Publication 8

puting and Networking from the University of Calabria, Italy. 
He is currently pursuing the Ph.D. degree with the University of 
Strasbourg, France. He is a member of the Network Research 
Group, ICube Lab. His research interests focus on software-de-
fined networks, the Internet of Things, and federated learning.

Pasquale Pace received his Ph.D. in Information Engineering 
in 2005 from the University of Calabria, Italy. He is currently an 
Assistant Professor in telecommunications with the Department 
of Computer Engineering, Modeling, Electronics and Systems 
(DIMES), University of Calabria, Italy. He has authored more 
than 100 papers in international journals, conferences, and 
books. His research interests include cognitive and opportunistic 
networks, sensor and self-organized networks, software-defined 
networks and interoperability issues of IoT platforms and devic-
es.

Antonio Iera is full professor of Telecommunications at the 
University of Calabria, Italy. He holds a Master in Information 
Technology from CEFRIEL/Politecnico di Milano and a PhD 
from the University of Calabria. His research interests include 
next generation mobile and wireless systems, and the Internet of 
Things. He is currently editor-in-chief of the Computer Network 
Journal, Elsevier.


