
Menu ou à la carte ? Une architecture pour programmer le

plan de donnée des réseaux sans fil contraints

Ahmad Mahmod1 et Julien Montavont1 et Thomas Noel1
1ICube Laboratory (CNRS UMR 7357), University of Strasbourg, France

Les réseaux sans fil contraints font face à un environnement dynamique, soumis à des variations constantes en raison
de changements potentiels dans leur environnement physique, des évolutions des exigences applicatives, et des progrès
technologiques. Ces variations peuvent affecter les performances du réseau et par conséquent nécessiter une reconfi-
guration de certains protocoles, voire un remplacement d’un protocole à la faveur d’un autre. Nous proposons dans
cet article une architecture modulaire basée sur les réseaux programmables permettant de programmer de manière fine
le plan de données des réseaux sans fil contraints. Une telle approche permet une adaptation constante du réseau aux
variations dynamiques afin de maintenir le niveau de performance requis.

Mots-clefs : Low-Power Lossy Wireless Network, Software Defined Wireless Networks, Programmable Data Planes

1 Introduction
Low-Power Lossy Wireless Networks (LLWNs) are characterized by short-range, low-power, and low-

datarate communications. They are particularly advantageous in various scenarios where traditional well-
performing communication infrastructure (e.g. 5G networks) may be impractical or costly, such as envi-
ronmental monitoring, industrial automation or healthcare systems. Those networks are dynamic due to the
evolving nature of the wireless environment, energy constraints, and potential node mobility, all of which
necessitate continuous adjustments to ensure efficient and reliable communication. Moreover, deploying
alternative protocols becomes imperative when fundamental changes are needed to enhance performance
or address new application requirements. This ensures that the communication infrastructure aligns with
evolving demands and maintains optimal functionality. However, most protocols are hardcoded into the
Operating System (OS), posing significant challenges when it comes to making protocol adjustments, such
as modifying the radio configuration or replacing an existing protocol with a new one. While over-the-air
firmware updates provide a solution for updating devices post-deployment, they often introduce interrup-
tions due to the necessity of device reboots. Unfortunately, this rebooting process not only disrupts the
continuity of operations but also contributes to high power consumption. This is primarily a result of the
extensive exchange of messages required to bootstrap the network, involving tasks like neighbor discovery
and route establishment.

This article introduces a novel architecture that makes the data plane of LLWNs fully programmable.
Our architecture, leveraging Software Defined Networking (SDN), is inherently modular, providing the
flexibility to modify individual protocol parameters (parametric programmability) or seamlessly replace
one protocol with another (modular programmability). This adaptability ensures efficient customization
and evolution of the network according to specific requirements. Our architecture is, to the best of our
knowledge, the first to include radio management in addition to a packet processing pipeline. The contribu-
tions of this article are to i) review and compare the possible technologies for programming the data plane
of LLWNs, and ii) propose a novel architecture to make the LLWN data plane programmable.

2 Existing Programmable Processing Pipelines
A programmable processing pipeline typically comprises three main stages — parsing, processing, and

deparsing. The parsing stage is tasked with extracting and analyzing the packet header. The processing stage



Ahmad Mahmod et Julien Montavont et Thomas Noel

processes the extracted headers and makes decisions according to the target of the processing. The depar-
sing stage recombines headers with the payload, preparing the new packet for the subsequent steps. These
three stages are generally sufficient for wired networks, which benefit from a reliable and stable medium.
However, in LLWN, MAC protocol plays a major role in the overall performance so, additional stages are
required to manage the radio configuration for accessing the time-varying wireless medium. As a result,
the inclusion of radio management in the framework is imperative for making the wireless data plane fully
programmable. Multiple technologies emerged recently to provide a level of network programmability with
different characteristics and use-cases such as Programming Protocol-independent Packet Processors (P4)
[B+14], or extended Berkeley Packet Filter (eBPF) [V+20]. Other emerging technologies can be adapted to
implement network programmability like Femto Containers (FCs) [Z+22].

2.1 Programming Protocol-independent Packet Processors (P4)

P4 is a high-level, domain-specific programming language designed for defining the data plane in network
devices. P4 enables the processing of packets allowing for the definition of new protocols in a hardware-
independent manner. This flexibility enables on-demand adaptive processing logic regardless of the networ-
king device’s underlying hardware. The architecture of P4 includes parsing the packets, making decisions
for processing according to match-action tables (MATs), and finally, deparsing the packet to apply the
processing output.

2.2 extended Berkeley Packet Filter (eBPF)

eBPF is a virtual machine (VM) that can be deployed in the Linux Kernel on-the-fly, enabling a wide
range of applications beyond just packet processing, including monitoring, security, and analysis. The eBPF
VM operates on an event-based model, utilizing hooks — specific checkpoints installed in operating systems
to observe particular events. It is also lightweight, featuring small-footprint requirements ; 11 registers and
a 512-byte stack, in addition to key-value maps for data sharing and storage. In terms of networking, eBPF
defines a set of hooks covering different points of the network stack, starting from the driver level with the
eXpress Data Path (XDP) hook to the higher layers with Traffic Control (TC) [V+20] enabling a tradeoff
between performance and flexibility. However, the available actions for this low-level hook are very basic
and are limited to dropping, redirecting, or passing to the stack.

2.3 Femto-Containers

Femto Containers (FCs) provide ultra-lightweight, secure, and isolated virtualization environments on
IoT devices for various applications. They adapt the eBPF VM’s concept and structure to Real-Time Ope-
rating Systems (RTOSs), making FCs lightweight and event-based. FCs are triggered using hooks in the
OS but, unlike eBPF, with the capability to extend hooks to any checkpoint in the RTOS flow, from the
driver level to the application level. However, the ultra-lightweight VM of FCs, with only 11 registers and
a 512-byte stack in addition to a limited instructions set comparing to eBPF, restricts them to defining only
basic functions within each container.

2.4 Comparison

LLWNs are constrained by limited memory, processing, and power capacities. Consequently, LLWNs
require a lightweight technology with a small memory footprint and low power consumption. Additionally,
this technology must not only provide a means to program the packet processing pipeline but also allow
for complete control of the radio component, including functions such as switching on/off the radio and
adjusting channel frequencies. Table 1 compares the proposed technologies for network programmability.

While P4 and eBPF present promising solutions for a programmable data plane, the absence of even
minimal support for managing the radio chipset—a critical need in wireless networks—is attributed to P4’s
initial design for wired networks and eBPF’s constrained interaction with device drivers, mainly through
the basic XDP hook. Moreover, the hardware requirements for both P4 and eBPF do not align with the
constraints of LLWN devices. P4 has demands on memory and processing capacities and eBPF is limited to
Linux OS, which requires higher hardware capacities, which exceed what is typically available on LLWN
devices. These factors contribute to the complexity of applying P4 and eBPF in LLWN environments.



TABLE 1: Comparison of Technologies
P4 eBPF Femto-Container

Scope Domain-specific for data
plane of network devices

Programming Linux Kernel
including network stack

Event-driven applications
in IoT devices

Footprint Large memory and proces-
sing requirements

Small memory footprint Small memory footprint

Limitations Need high-perf. hardware,
no radio management

Limited to Linux Kernel, no
radio management

Limited performance for
time-critical tasks

On the other hand, FCs offer a promising solution for deploying isolated network protocols in LLWNs,
aligning well with the stringent requirements of network devices in such environments. FCs can install
hooks for low-level system’s events enabling a possibility to manage the radio. Also, FCs are lightweight
with limited memory occupation in addition to reduce power consumption due to its event-based triggering
nature. To create a full complex application, a chain of FCs can be utilized, with each container implemen-
ting an elementary part of the application. These applications, which could be communication protocols
placed anywhere on the stack, are attached to the appropriate OS hooks. Importantly, these applications
can be installed or updated at runtime without the need for firmware updates on the device. This charac-
teristic offers a low-power and non-interruptive method to update the running services. Although FCs are
hardware-agnostic but they are currently limited to specific RTOSs, and being a relatively new technology,
they hold the opportunity for further development to become more OS-agnostic as well.

3 Proposed Architecture

LLWNs require a programmable data plane architecture that responds to the requirements of an adap-
tive wireless environment, while simultaneously respecting the constrained capabilities inherent to LLWNs.
Our proposed architecture incorporates an SDN Controller, which represents a centralized control plane of
the LLWN, leaving only the data plane in the LLWN devices. The SDN Controller continuously receives
environmental conditions from the LLWN devices, analyzes these conditions, and then decides on the most
suitable data plane protocols to perform optimally under such conditions and according to the required
performance targets. The modifications may be limited to some parameters or may affect the whole de-
ployed protocols. Implementing a centralized SDN architecture in LLWNs is particularly challenging due
to unreliable links and network contentions that could impact control traffic. Moreover, ensuring success-
ful updates and fast convergence requires transmitting modifications from the SDN controller to LLWN
devices in a reliable and timely manner. This is crucial as all devices must promptly apply modifications
to reestablish their communication capabilities. Allocating dedicated time-frequency blocks for the control
traffic, as proposed in [V+23], is one of the possible solutions to ensure a reliable control plane in LLWN.

The defined protocols of the data plane is deployed on the devices in the form of applications. To facilitate
runtime modifications and ensure security, we propose defining these applications within lightweight Virtual
Machines (VMs). Based on the previous comparisons, we nominate Femto Containers (FCs) to serve as
the virtualization platform but, as we propose a general architecture, any other lightweight virtualization
technique may be used to achieve proposed architecture.

FCs can be utilized to perform basic networking functionalities, leveraging the ability to install hooks
on desired network events, including low-level ones. A micro-service approach can be adopted to create
a packet processing pipeline, with each micro-service represented by an FC. For instance, to implement a
simple link layer using the proposed approach, we may use a set of FCs to check the errors and parse the
received frame header, then trigger another set of FCs that schedule the next hops, which precedes another
set represents the deparser that forwards the received frame to the next hop (see Fig.1 (a)). This use-case
proves that the FCs micro-services approach can implement the processing pipeline supported by P4 and
eBPF. Furthermore, our approach enables pre-processing management of the wireless radio device using
the proper timing hooks. Fig.1(b) demonstrates a direct duty-cycle management of the wireless device use
case, which cannot be implemented using P4 and eBPF.



Ahmad Mahmod et Julien Montavont et Thomas Noel

OS
LLWN Device

Environment ConditionsFC

FC

SDN Controller

FC
...

(a)

RX Hook

LLWN Device

Duty-Cycle Management

(b)

...

FC

FC
...

Environment Conditions

FC

Wireless
Device

Deparser

FCFC ...

Processor

FCFC ...

Parser

FCFC ...

Manager

FCFC ...

OS
Time HookWireless

Device

Processing Pipeline

FIGURE 1: Proposed Architecture

Our architecture is adaptive and double-modular, enhancing scalability, facilitating easy updates, and en-
abling fault isolation. The first level of modularity resides within the protocol itself, where each elementary
function in an FC (micro-service) operates independently of the others. This means that each function can
be updated without impacting the others. Fig.1(a) shows how the Parser is updated by replacing a single
FC without affecting the others. The second level of modularity exists between the protocols, which are
independent chains. This allows for the protocols to be updated separately. For example, the Deparser may
be completely replaced with a new one. However, our system may experience performance degradation
compared to monolithic and hardcoded implementation of network protocols, especially when deploying
synchronous protocols that demand precise timings. This will be explored further in future research.

4 Conclusion and Future Works
In this work, we have highlighted the need for network programmability in LLWNs due to their dy-

namic environments. We reviewed and compared some network programming technologies and after this
reviews, we proposed a double-modular and lightweight programmable network architecture for LLWNs.
We found that FCs may offer a promising solution for our programmable architecture in LLWNs by provi-
ding the programmable pipeline in addition to the radio management. Our architecture is based on SDN
and utilizes lightweight VMs in a micro-service approach to define the data plane in LLWN devices. We
are currently implementing the processing pipeline using FCs on real hardware as a proof-of-concept then
we are planning to implement the radio management to provide a testbed for the proposed architecture.

Acknowledgments
This work is part of the ANR-funded project PERENNE (ANR-23-CE25-0008).

Références
[B+14] P. Bosshart et al. P4 : programming protocol-independent packet processors. ACM SIGCOMM

Computer Communication Review, 44(3), 2014.
[V+20] M. Vieira et al. Fast Packet Processing with eBPF and XDP : Concepts, Code, Challenges, and

Applications. ACM Computing Surveys, 53(1), 2020.
[V+23] F. Veisi et al. Enabling Centralized Scheduling Using Software Defined Networking in Industrial

Wireless Sensor Networks. IEEE Internet of Things Journal, 10(23), 2023.
[Z+22] K. Zandberg et al. Femto-containers : lightweight virtualization and fault isolation for small soft-

ware functions on low-power IoT microcontrollers. In proc. of the ACM/IFIP International Midd-
leware Conference, 2022.


