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Abstract—An emerging modality, increasingly used by edge
devices, to train machine learning models in a distributed and
cooperative way is Federated Learning (FL). It combines an
increase in the quality of the learning process with data privacy
needs. Alongside the advantages of this emerging paradigm,
however, there is a critical factor that risks seriously affecting
its effectiveness in future 5G and 6G application scenarios: the
possible delays deriving from the scarcity of communication
resources to connect the clients to the server, which risks slowing
down the process excessively and making it less effective in
the presence of new types of real-time applications typical of
5G/6G scenarios. To face this issue, the paper proposes a new
approach to client selection that, unlike the various approaches to
streamlining FL communications proposed so far, starts from a
typically networking research point of view and makes use of the
potential of the Software-Defined Networking (SDN) paradigm
for the choice and continuous dynamic update of the clients par-
ticipating in the FL process. This allows to keep the distributed
learning process at high levels of effectiveness and efficiency,
i.e., guaranteeing an overall time reduction of the FL process
under different network traffic load conditions, as demonstrated
by the performance evaluation campaign conducted through the
implementation of a testbed platform.

Index Terms—SDN for AI, Federated Learning, FL client
selection, SDN-based orchestration.

I. INTRODUCTION

Initially proposed by Google [1], FL is rapidly emerging as
a distributed paradigm capable of attracting significant interest
in several vertical markets to support intelligent pervasive
applications in many domains of everyday life. Interest in FL
is primarily motivated by its ability to effectively train models
on vast amounts of data available at a multitude of remote user
devices while ensuring stringent levels of data privacy. In fact,
in FL the model is locally trained on data available near remote
devices participating in the process (so-called FL Clients) and
then the result is sent to a central server (so-called FL Server).
The advantage is that the raw data generated by or available
to Clients are not sent, but only the parameters relating to the
trained model, which are processed by the Server to aggregate
them and send the most performing resulting model back to
the clients. The procedure is reiterated over several rounds
until the desired accuracy level is achieved [1], [2].

It is emerging from the literature that, although FL is still
in its initial stages of development, it is widely recognized as

one of the most promising solutions to fulfill 6G’s vision of
ubiquitous AI [3], [4].

An issue that may affect the FL process is the possibility
that the scarcity of resources in the network that the traffic
of the various clients has to cross, negatively influences the
overall achievable performance. This does not represent a
problem in cases of support for typical IoT applications in
which FL is intended for a high number of mobile and/or
constrained IoT devices in which losses and delays in the
various update rounds are already expected. The same can
be said for several long-term applications that exploit FL
for example to make predictions in the field of e-Health or
in the environmental field. However, if we place ourselves
in an evolutionary context in which several of the typical
applications that users will want to use through future 5G/6G
platforms are expected to be time sensitive, then the situation
changes radically and a reduction of the delay in the learning
process becomes mandatory.

The problem of making communications more efficient in
the FL process is not new and has already been addressed in
the literature, but the vast majority are research and proposals
that come from the scientific communities of Learning and
aim at adapting the process to streamline the transfer of model
parameters between client and server.

In this paper, the proposed approach starts from the very
recent literature dealing with the topic of the “Network for
AI” (as opposed to the more traditional approach of “AI for
networks”) to propose an SDN-assisted Federated Learning
mechanism; in which the possibilities offered by the recent
network softwarization techniques are put at the service of
FL processes. In a previous initial work [5], we simply
demonstrated how the use of Software Defined Networking
techniques can actually be able to reduce training times while
maintaining the same performance levels.

In this work we go one step further and propose an SDN-
assisted Federated Learning solution that leverages a closer
collaboration between the Network Controller and the FL
Server. We, therefore, hypothesize also a dynamic selection
of clients assisted by the SDN controller during the various
cycles of the training process. In practice, round after round
the SDN controller will not only perform a smart routing of



client-server data flows in order to minimize delays. But it will
also take care of making estimates of the delays on the traffic
flows originating from all clients in order to be able to provide
useful information to the FL Server and allow it to select the
clients to be used in the next round by also accounting for
data transfer delay and load on the network.

The research presented aims to evaluate the effectiveness
of the illustrated approach by conducting a proof-of-concept
study. Obviously, in the future it will have to be the basis
for other works in which also other parameters of the client
devices can be taken into consideration together with the delay
(e.g. Age of Information, Computation and Memory Capabil-
ities) for an effective selection of the clients themselves.

Specifically, the remainder of this paper is organized as
follows. Section II describes some significant related works
mainly focused on increasing the performance of ML tech-
niques by using SDN. In Section III, the proposed SDN-
assisted client selection strategy is described. Details on im-
plementation choices for the used performance assessment
tool are given in Section IV, while performance evaluation
analysis and obtained results are discussed in Section V.
Finally, Section VI summarizes the main conclusions and
presents future research directions.

II. RELATED WORKS

An intense research activity during the last years has been
focused on increasing the performance of SDN using ML
techniques, as surveyed e.g., in [6]. Conversely, studies that
have tried to understand the role that the SDN paradigm can
play in supporting FL (or distributed learning more generally)
are few and quite recent.

In the overlay network proposed in [9] the various clients
and the server are modeled as auction buyers and sellers and
are guided by an SDN controller during their bidding and
provisioning activities respectively. The authors of [11], as part
of a study on implementing FL application on a distributed
architecture based on SDN, also address problems related to
synchronization schemes in the context of FL and attempt to
alleviate them by using distributed SDN.

Other issues where SDN has been proposed to support
FL include, among others, QoS control and content caching
[13] in the presence of mobile users; failure recovery in
industrial IoT scenarios [15]; slice creation and management
of associated optimal forwarding graphs [10]; data collection
and secure data delivery for a group of local IoT devices
performing distributed ML [12]. Also, the authors of [14] ex-
plored software-defined networks and mobile edge computing
as architectures to deploy a FL system for e-health treatment
recommendation based on Internet of Health Things devices.

Finally, it is also worth mentioning the recent survey work
in [16] in which the authors provide an overview of solutions
and challenges on the FL over SDN issue as a solution to
provide more flexible and effective mechanisms for participant
collaborations.

Despite the previous cited works, the contribution of our
research is the first, as far as the authors know, which evaluates
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Fig. 1. Reference SDN-based architecture to support FL processes.

the potential of a SDN-based framework for the choice and
continuous dynamic update of the clients participating in the
FL process to maintain the distributed learning process at
consistently high levels of effectiveness, efficiency and quality.

This is an approach completely different from (and comple-
mentary to) the many interesting improvements to the FL pro-
cess proposed in the literature to make it more communication-
efficient, such as in [7] and [8], which intervene on aspects
related to the learning process, while in this paper we aim for
a more network management oriented approach.

III. SDN-BASED FRAMEWORK TO SUPPORT FL PROCESSES

This section introduces the proposed SDN-assisted client
selection strategy, by highlighting how the SDN controller can
support client selection in FL processes.

A. The Reference Architecture

Figure 1 shows our reference system consisting of a frame-
work to implement Federated Learning in which the main
players of the FL process (FL Clients and FL Server) are
supported at the Application layer by an FL Orchestrator and at
the Network layer by a network resource orchestrator coupled
with the SDN Controller.

As for the role associated to the FL Server, we can say
that the basic functionalities usually associated to it, i.e the
training of the local models received from the client devices
and the creation of the global model to send back to them,
are obviously still maintained. It works closely with the FL
Orchestrator, whose main task is basically to perform client
selection and, in addition, through appropriate APIs, establish
two-way communications with the SDN Server.

The Orchestrator will always have to send to the SDN
Controller information about the selected clients to allow the
latter to perform the control, management and monitoring of
the traffic flows associated with the FL process at each round.
More specifically, the controller will implement algorithms,
which, in the first instance, are basic dynamic path selection



and load balancing algorithms, usually implemented in soft-
ware defined networks, to always guarantee “fast” and non-
overloaded client-server paths. Furthermore, it will be able to
implement additional functions (not yet implemented in this
paper) in which it will also be possible to take into account
the outgoing traffic from the various clients not belonging to
the FL sessions but in any case which may create additional
overloaded. The objective is obviously to continuously assure
the minimization of the FL traffic transmission delay on the
client-server paths to guarantee a higher quality of the process.

In the opposite direction, the Controller must send synthetic
information about the delays experienced on the various client-
server paths when sending model parameter updates to the
previous round of the FL process, to allow the FL Orchestrator
to make the best selection of the clients to be involved in the
current round. To make a dynamic selection that can allow
the server to always choose the clients with the potential best
performance in terms of delay, estimates of the delays on the
routes from the server to potential clients not participating in
the training in the previous round are also monitored by the
SDN Controller and reported to the Orchestrator.

Obviously, it clearly emerges that during the dynamic client
selection and re-selection procedure, the FL Orchestrator and
the SDN Controller continuously exchange control data with
each other; which could suggest an excessive overload on the
network. We will see in the Section V, showing the results
of our proof of concept study, that the additional overload
of these exchanges has minimal impact on the load that the
network has to handle.

B. SDN-assisted Client Selection Procedure

Always selecting the clients experiencing the best conditions
in the network, could for sure limit the risk that a client either
is forced to abandon the FL process for reasons related to the
saturation of communication resources or it drastically reduces
the quality of the whole process due to the accumulated delays
caused by an overloaded path to the server. This is the principle
driving us to consider in this paper the possibility to carry out
the client selection not in a traditional way (for example, in the
simplest case, randomly within a set of N devices suitable for
training and which have expressed an interest in participating
in the FL process) but as illustrated below.

It is important to underline that the focus of our work is
not to propose a new sophisticated client selection scheme
but rather to evaluate the influence that the use of the SDN
paradigm can have on one of these schemes. Therefore, we
propose to implement an SDN-assisted client selection strategy
to demonstrate that the SDN controller, relying on round-by-
round information about the average delay experienced by
clients in data transmission, can help select those of higher
value for the FL process.

In light of this, the selection strategy we implement takes
into account only the lowest delays among the available clients
following the assumption that all the clients have the same
computational resources. This is in fact the only way that
allows to carry out a reliable proof-of-concept of the potential
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Fig. 2. SDN-assisted client selection scheme: interactions between the
Controller and the Orchestrator.

of a clients selection approach assisted by the SDN; in fact, it
allows to cut away from the selective process the performance
bias that would derive from the presence of more or less
performing clients in terms of computation and buffering
capabilities for example.

Obviously, the next step, to be carried out after evaluating
the positive impact that the dynamic control of the network
status and related delays has on client selection, is to in-
vestigate the effect of a selection which, in the presence of
heterogeneous devices, takes into account parameters relating
to both the state of the communication resources and the
capabilities of the devices. This is the subject of future
research. In detail, our SDN-assisted client selection strategy
works as follows:

1) At the beginning of the selection process, a data packet
is sent from all N clients that would like to participate
in the federation learning process; the M ⊂ N clients
with the lowest delay values are chosen to run the first
round of the training process;

2) The learning process is then activated on the selected
clients and, during each learning round, the SDN con-
troller keeps updated statistics on the average transmis-
sion delays of each selected client.

3) At the end of each round, the new selection process is
carried out on the whole set N, considering the average
delay values experienced by the M participating clients
in the previous round and the instantaneous delay values
of the N-M clients not participating in it; this allows the
Orchestrator to change, if needed, the set of clients that
will perform the training in the next round. The choice
in the turnover phase is constantly supported by the
controller which also takes care of measuring the delay
of the clients that have not participated in the previous
round using a background ping mechanism; notifying
the orchestrator of this delay at the start of each training
round allows it to perform a wiser selection mechanism.

Figure 2 shows the logical flow diagram of the described
strategy and gives details on the interactions among the



different modules of the proposed SDN-based FL framework.

IV. TESTBED AND PERFORMANCE METRICS

In this section, we provide details on the testbed imple-
mented for performance evaluation, and on the metrics used
to evaluate the goodness of the obtained results.

A. Testbed Implementation

The GNS3 (Graphical Network Simulator version 3) [17],
open-source software is used to implement and test the pro-
posed SDN-based FL framework. The reference hierarchical
network topology used in the test is shown in figure 3 and
comprised of an ODL (OpenDaylight [18]) SDN controller
located at the top of the tree, along with ten OVSs (Open
vSwitches) distributed across three levels (S1...S10). Cross-
connections exists between the switches belonging to level-2
and level-3 to provide more route choices for the clients. All
links connecting the switches have a capacity of 100 Mbps.
The network hosts a Federated Learning (FL) server and eight
clients (C1...C8) that uses the Flower Federated Learning
framework [19], properly installed and configured, to run a
FL process based on the FedAvg algorithm [1].

In addition, virtual machines (O1...O8), implemented in
VirtualBox and exported into GNS3, are included in the
topology to support the overloading profile, whose operation
is explained later in section V. Table I specifies the character-
istics of all the virtual devices used in our tests.

TABLE I
VIRTUAL MACHINES SPECIFICATIONS.

Virtual Machine CPU cores RAM (GB)
CONTROLLER 8 16

SERVER 8 8
Virtual Switches (S1...S10) 4 4

Other virtual devices (O1...O8) 2 4
Clients (C1...C8) 2 4

Fig. 3. Network topology implemented in GNS3.

The controller builds a virtual graph of the network that
includes switches and connected clients to find the optimal
routes from each client to the server. Specifically, in our test-
bed, it is responsible for:

• Dynamic Routing - implemented by running an applica-
tion on top of the controller that retrieves the information
about the participated OVSs, clients, the links, and the
connection ports. It builds the weighted virtual network
graph and determines the best route from each client to
the server via a Dijkstra shortest path algorithm.

• Delay collection and estimation - measuring the delay of
the clients and delivering it to the server at the beginning
of each training round in order to use this information in
the client selection phase.

The considered training process consists of 40 evolution
rounds, each consisting of 2 epochs. It uses the well-known
CIFAR-10 [20] dataset and the [21] DenseNet121 neural
network, 33 MB in size with 8.1 million hyper-parameters.
The HP Enterprise Proliant DL560 Gen10 hardware platform,
equipped with 2x Intel Xeon-Gold 6225N processors (2.3GHz
and 24 cores) and 256GB of RAM, is used to run the
implemented architecture.

B. Performance Metrics

We considered Accuracy and Loss as reference performance
metrics because they are very well-known and widely adopted
metrics in machine learning. In particular, Accuracy, typically
expressed as a percentage, is the count of predictions where
the predicted value equals the true value and can provide
a measure of the performance of a classification model. In
contrast, Loss is a cost function that provides a more nuanced
view of model performance by considering the probabilities
or uncertainty of a forecast based on how much the forecast
varies from the true value. Unlike Accuracy, Loss is not a
percentage, rather it is a sum of errors made for each sample
in the training or validation sets. Both performance metrics are
implemented in the Flower platform and computed server-side
at the end of each FL round.

V. RESULTS

In this section, we analyze the performance achievable
when using or not using SDN to support the FL framework,
with particular attention to the SDN-assisted client selection
strategy described in Section III-B.

To flexibly test all the proposed features, we use traffic
profile configurations that dynamically overload client paths by
properly configuring the network devices (O1...O8) to transmit
data traffic between them over UDP connections. This allows
us to test the reaction and adaptation of the SDN-assisted client
selection scheme to changes in traffic and related overloaded
network links. Figure 4 shows the various overload profiles
of the used network links, which alternate during 4 periods
of 500s each. The goal is to periodically overload the two
available links of each virtual switch, at the third level of
the network topology, so as to force its connected clients to
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Fig. 4. Time-varying Traffic profile (red dashed lines = overloaded links).

experience congestion in all available paths to the server and
observe the reaction of the SDN-assisted FL system.

The simulations are performed with both random and SDN-
assisted client selection algorithms which are called upon
to always choose six out of eight clients in each round;
the random algorithm selects clients randomly and might,
therefore, also include clients with overloaded paths. We first
test a system with clients (homogeneous, with 4 GB RAM and
2 CPU cores each), subject to a background additional data
rate of 25 Mbps on each link. This allows us to assess that
both SDN-assisted dynamic routing and client selection, when
coupled, can improve performance of the FL framework.

In particular, figure 5 shows that, thanks to the SDN-assisted
client selection strategy, only the best-performing clients pre-
senting the least communication delay will be selected, each
round, to contribute to the FL process; this wise and flexible
choice can allow to reach the maximum accuracy value (above
70% in the case illustrated) saving 20% of the time.

To further validate our results, we also study scenarios with
lower and higher additional background data rates of 10 Mbps
and 40 Mbps, respectively. It can be seen that the joint use
of SDN-assisted routing together with SDN-assisted client
selection greatly improves FL processing time reduction the
more congested links become. Table II summarizes the time
reduction of the FL process in each simulated scenario.

TABLE II
TIME REDUCTION OF THE FL PROCESS VARYING THE TRAFFIC OVERLOAD.

Overload traffic Time reduction (secs) Time reduction [%]
10 Mbps 353 9.48%
25 Mbps 2957 20.07%
40 Mbps 4592 47.55%

A. Overhead Analysis

Finally, the “price to pay” for using the proposed mecha-
nism, can be evaluated in terms of the amount of additional
control data packets traveling from/to the SDN controller. This
performance metric is highly relevant because it can help

understand the actual impact of network resource orchestration
on the tested SDN-based FL framework. Table III shows the
values of the average control data amount that the controller
sends over time; we measured these data over the whole rounds
of the FL process (40 rounds) and averaged them.

The fact that, even in cases where both SDN-assisted
dynamic routing and FL client selection strategies are not
used, the SDN controller is still generating additional control
data has not to surprise. This minimum amount, in fact, rep-
resents the expected overhead due to the presence of an SDN
controller implementing static routing in our software defined
test network and is the reference value for our evaluations.
As expected, the overhead, in terms of control data packets,
increases when using the SDN-assisted dynamic routing and
even more using SDN-assisted FL client selection; however,
the measured average overhead data rate is quite low (for
example, around 1.2Mbps with 25Mbps of overload traffic).

This reassuring trend further confirms that the additional
control load, generated by the SDN-assisted FL client selection
strategy, is highly acceptable and only weakly dependent on
the amount of overload data traffic on the network links. Figure
6 shows the percentage increase of the overhead using the
proposed schemes with respect to a standard SDN commu-
nication architecture used to manage a simple static routing
configuration for the virtual switches.

TABLE III
OVERHEAD ANALYSIS VARYING THE DATA TRAFFIC.

Overload SDN-assisted SDN-assisted Overhead
scenario Routing Client selection [Mbps]
10Mbps No No 0.926

Yes No 1.101
Yes Yes 1.143

25Mbps No No 0.94
Yes No 1.166
Yes Yes 1.205

40Mbps No No 0.951
Yes No 1.180
Yes Yes 1.238

VI. CONCLUSION AND FUTURE WORKS

The main objective of the study presented in this paper was
to understand the potential of coupling the SDN paradigm
to Client Selection policies within a FL process. We started
by postulating the hypothesis that a selection of clients that
also takes into account the communication delays experienced
on client-server paths can reduce the convergence time of FL
processes and adapt it to typical real-time applications in future
communication scenarios. We then proposed a framework
in which an Orchestrator of the FL service and an SDN
Controller work in synergy to select clients and to dynamically
guarantee them the best load conditions on the links used by
client-server traffics.

The conducted proof-of-concept analysis allowed to bring
out interesting potential, confirming the feasibility of the
proposed study also demonstrating a low impact in terms of
additional signaling messages within the network.
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Future research could take inspiration from the positive
results achieved to develop more sophisticated client selection
policies considering not only the parameters derived from the
SDN Controller but also the capabilities of the client devices
and any optimizations on the traffic profiles generated by the
clients downstream of the training.
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