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Abstract

Low-Power and Lossy Wireless Networks (LLWNs) form the foundation of the Internet of Things (IoT), connecting
billions of constrained devices across diverse domains. Despite their critical role, the design of LLWN devices is
strongly constrained by limited memory, processing power, and energy supply. These limitations have historically led
to the adoption of monolithic network stacks, where protocol logic is tightly integrated and bound at compile time.
As a result, even minor changes require a full firmware update, making protocol evolution costly and impractical.
Because LLWN deployments face diverse and evolving conditions, a single static stack design or fixed configuration
is insufficient. In this paper, we propose PENSIL, a network architecture featuring a programmable and modular
network stack for LLWN that enables selective updates of protocol functions, combined with a central orchestrator
that manages device stacks. PENSIL enables dynamic and semantic reconfiguration, from parameter tuning to network
configuration swapping, allowing networks to adapt without downtime. A proof-of-concept implementation on real
hardware demonstrates that our architecture enhances performance through fast, lightweight and secure updates while
respecting the stringent memory, energy, and processing constraints of LLWN devices, ultimately bridging the gap
between programmability and efficiency.
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1. Introduction

The Internet of Things (IoT) aims to connect every “thing” or “object” around us, enabling them to collect data,
process it, and make decisions automatically [1]. Low-Power and Lossy Wireless Network (LLWN) is a core compo-
nent of IoT, supporting applications ranging from healthcare and environmental monitoring to smart manufacturing
and smart cities. LLWN devices function as sensors or actuators connected wirelessly, operating under strict resource
constraints—including limited energy, memory, and processing capacity—in order to remain low-cost [2]. These
limitations result in constrained wireless communication in terms of range and data rate, often leading to lossy links.

With the continuous evolution of IoT networks, software updates have become essential to ensure long-term
sustainability, maintain connectivity, address security vulnerabilities, and adapt to evolving application requirements.
Updates also reduce electronic waste by extending device lifetimes and avoiding frequent replacements or physical
interventions. Over-the-Air (OTA) mechanisms provide a practical solution, enabling remote updates without physical
access and lowering operational costs [3].

Most LLWN operating systems hardcode the network stack into the system, necessitating full-image firmware
updates even for minor reconfigurations (e.g., tuning a single parameter) [4]. Although simple, full-image OTA
updates are inefficient, as they transmit large binaries over bandwidth-limited LLWN and require a reboot, which
results in the loss of all network states. The device must then rerun the necessary protocols to reconverge, leading to
long connectivity interruptions [5].
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We propose PENSIL, a network architecture that introduces a modular, programmable, and lightweight network
stack for LLWNs. PENSIL relies on lightweight Virtual Functions (VFs), each implementing a specific network
function. By chaining these VFs, complete network protocols can be flexibly composed and dynamically reconfigured.
Each VF operates independently of the device firmware and can be updated over-the-air (OTA). PENSIL thus enables
a wide range of programmability, from fine-grained parameter tuning (e.g., adjusting the retransmission limit at the
MAC layer) to full protocol or function replacement (e.g., switching from hop-by-hop to source routing).

PENSIL includes a central orchestrator that manages the network stacks of connected devices and supports any
control-plane deployment model. The orchestration process is semantic-aware, extending beyond conventional bi-
nary image management to interpret protocol semantics and state dependencies. This enables the orchestrator to
precisely determine what to update and how to apply those updates within the network stack. By reasoning about
the functional context of each update, the orchestrator maintains continuous connectivity and prevents service disrup-
tions that typically result from naive, low-level modifications to running protocols. For example, updating a routing
protocol often leads to the loss of forwarding tables and temporary disconnection. In PENSIL, the orchestrator can
centrally store each node’s neighbor and routing information, automatically restoring forwarding tables after the up-
date to prevent connectivity interruptions and reconvergence delays, as demonstrated in our evaluation. Through
this semantic-aware orchestration, PENSIL achieves safe, context-preserving updates across protocol layers, enabling
dynamic reconfiguration without compromising network stability or performance.

The main contributions of this paper are as follows:

1. A programmable and highly modular network stack for LLWNs that enables flexible, fine-grained, and selective
run-time updates.

2. An over-the-air (OTA) management framework that supports semantic-aware network stack reconfiguration and
multiple control-plane deployment modes.

3. A proof-of-concept implementation and experimental evaluation on real hardware, validating the practicality
and efficiency of the proposed architecture.

To encourage other researchers to reproduce and expand our results, we will release the implementation of PENSIL
and the evaluation scripts used in this paper. The remainder of this paper is organized as follows: Section 2 reviews
existing approaches for enabling runtime updates, focusing on both dynamic code updates and SDN-based techniques.
Section 3 details the proposed architecture, Section 4 presents the proof-of-concept study using the UDP protocol, and
Section 5 concludes the paper and discusses future work.

2. Background and Related Works

2.1. Dynamic Code Update Frameworks in LLWN
Many runtime code update approaches have been proposed to update code after deployment in constrained LLWN

devices. These approaches primarily aim to reduce update size and time and avoid the reboot required after full-image
firmware updates. Most of them focus on updating applications, while far less attention has been devoted to updating
the network stack.

The scripting approach interprets script logic at runtime before execution. This runtime interpretation allows
scripts to be updated after deployment. Several well-known scripting languages, including JavaScript, have been
ported to constrained IoT devices in frameworks such as RIOTjs [6] and JerryScript [7]. However, scripting ap-
proaches require a significant memory footprint and processing capacity to interpret scripts at runtime, making them
heavy for constrained LLWN devices.

The module-based approach decomposes firmware into separate modules that can be independently developed
and compiled, establishing clear boundaries between system components and enabling updates to target specific mod-
ules rather than the entire firmware. The symbol table relocates the addresses of functions and data in each module
to their physical memory addresses, enabling linking between modules. The binding model between already installed
modules and new ones defines two categories of the module-based approach: strict and loosely-coupled.

In strict binding, the base image exposes a symbol table generated at build time and fixed at deployment, as
exemplified by Contiki [8] and TinyOS [9]. Because symbol tables are non-extensible at runtime, updates are typically
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confined to application-level modules layered above the base image (kernel). By contrast, loosely-coupled binding
allows runtime interaction between modules, enabling the symbol table to be modified after deployment and expanding
programmability toward kernel components but introduces post-update tasks (re-binding, allocation, relocation) that
can increase complexity and operational risk. Systems such as Remoware [10], Lorien [11], and GITAR [12] adopt
loosely-coupled binding. However, only GITAR has demonstrated updates to network stack components, while the
others focus solely on the application layer.

The virtualization approach encapsulates functionality within independent virtual machines that operate sepa-
rately from the device firmware. This enables strong isolation between services and allows components to be added,
replaced, or reused without impacting the rest of the system, in a plug-and-play manner. Examples include We-
bAssembly [13], adapted Java VM [14], and rBPF [15]. While this approach achieves high modularity and reusability,
it introduces non-negligible execution overhead, which may limit its suitability for constrained IoT devices.

All previous frameworks using these approaches lack a remote OTA update mechanism—except TinyOS, which
is inherently very limited in programmability. This creates a fundamental gap: while these approaches are modular
in concept, they fail to translate modularity into practice, since updates still require physical intervention. Such inter-
vention is disruptive, costly, and impractical in large-scale LLWN. On the other hand, GITAR is the only effort in this
field that has attempted to introduce a form of modularity to the network stack. However, beside lacking OTA updates,
it lacks several key features that make it impractical and inefficient for real network programmability. By packaging
each protocol as a single monolithic module rather than decomposing it into fine-grained networking components,
the system treats protocols as generic software units instead of networking entities. This obscures essential semantics
(e.g., state machines, timers) and leads to coarse-grained, inefficient updates.

Recently, a lightweight virtualization approach has emerged, designed to minimize overhead and resource us-
age. One example is the Femto Container (FC), a middleware framework for deploying lightweight virtual functions
on resource-constrained devices. These virtual functions maintain a minimal memory footprint and low processing
overhead while being hardware-agnostic, enabling operation across diverse hardware platforms and boards. The ar-
chitecture follows an event-driven execution model, triggered by specific events integrated basically at the application
layer. FCs can be launched and updated transparently to the operating system as independent elements, without
requiring full firmware updates [16].

Lightweight VFs form the core of our network architecture. We extend FC beyond the application layer to addi-
tional layers of the network stack and employ it to evaluate our architecture, as detailed in next sections.

2.2. SDN-Based Data Plane Programmability

Early LLWN deployments relied on a distributed control plane, with control functionality co-located with the data
plane on network nodes. Examples include distributed routing protocols such as RPL [17] and contention-based MAC
scheduling such as IEEE 802.15.4 CSMA/CA [18]. This approach provides local autonomy and minimizes control
traffic but may suffer from slow convergence, sub-optimal global performance, and typically requires full firmware
updates to modify network behavior—an especially challenging task in LLWNs [19].

More recently, lightweight SDN adaptations have been proposed to address LLWN constraints [20]. Most of these
approaches focus on routing management at the SDN controller, dynamically pushing forwarding rules to nodes [21,
22, 23], while others target the MAC layer, managing TDMA resource allocations [24, 25]. SDN has also been
applied to enhance security by detecting and mitigating abnormal behavior [26, 27]. Nevertheless, establishing and
maintaining the management plane—the link between nodes and the SDN controller used to collect network metrics
and push updates—remains challenging, as investigated in [28].

Overall, the programmability provided by these solutions is largely restricted to updating match-action rules, as in
conventional wired SDN networks. This limitation underscores the need for a more flexible and fine-grained approach,
where entire network functions can be selectively updated at runtime, as proposed with PENSIL.

3. The PENSIL Architecture

In our architecture, Programmable Network Stack for low-power lossy IoT networks using Lightweight-virtualization
(PENSIL), network protocols are implemented as sets of lightweight Virtual Functions (VFs). These lightweight VFs
minimize overhead, making the approach suitable for constrained devices, while their modular independence from
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Figure 1: Network Stack on LLWN device

both the operating system and other functions enhances security, isolation, and reliability. A central orchestrator man-
ages the network stacks of all nodes in the network, ensuring semantically consistent and safe configurations. By
combining fine-grained modularity with semantic orchestration, PENSIL supports flexible control-plane deployment
models, including hybrid approaches that overcome the limitations of purely centralized or distributed modes and
thereby enable exceptional programmability. Finally, its function-level modularity allows remote over-the-air (OTA)
updates, enabling fast, selective, and efficient reconfiguration of each node’s network stack. Femto Containers, or any
other lightweight virtualization technique, can be adopted to serve these VFs.

3.1. Network Stack

We build our network stack using Virtual Functions (VFs), minimal building blocks that each implement a spe-
cific network function through well-defined interfaces. A submodule represents a logical unit formed by composing
two or more VFs to realize a concrete capability or feature within the network stack. A complete network protocol can
thus be constructed by combining VFs and submodules, enabling the implementation of any communication protocol
across both high and low layers of the stack, as illustrated in Fig. 1. For instance, at the Network Layer, a Parser
VF may parse a received packet and extract its header fields before processing by a Packet Processing submodule
composed of multiple VFs. Subsequently, another VF acts as a Deparser to prepare the packet for transmission. VFs,
either individually or grouped into submodules, can implement a wide range of mechanisms, including backoff al-
gorithms, packet scheduling, link-quality estimation, routing decisions, and neighbor discovery. The primary goal of
the network stack design is protocol agnosticism, allowing any protocol, whether part of the data plane or the control
plane, to be implemented entirely as VFs. By decomposing protocols into independent VFs or submodules, PEN-
SIL achieves fine-grained, function-level control, enabling semantic, selective, and faster updates at runtime so that
changes can be applied to a single VF. In contrast, existing approaches often treat the stack as monolithic binaries and
typically require full protocol updates. Additionally, the stack promotes reusability, as individual VFs or submodules
can be leveraged across different protocols and layers.
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Figure 2: PENSIL Architecture

3.2. Network Stack Management

To update the protocol stack in real time during network exploitation, PENSIL includes a central orchestrator
responsible for managing over-the-air the network stacks of LLWN devices. Fig. 2 illustrates the complete PENSIL
architecture.

The orchestrator consists of two main elements: (i) Network Manager: It analyzes network performance and
determines when the network stack should be reconfigured. When updates are needed, it generates new versions of
the relevant VF(s) and applies them after compiling and testing. (ii) Management Server: Distributes new versions of
VF(s) to selected devices in the LLWN. Each VF is packaged together with the necessary metadata to ensure secure
and reliable installation, forming an Update Package. The metadata guarantees both safety and security: security
metadata includes authentication information and a hash code for integrity verification, while installation metadata
specifies the version number for version control, the target device class, the VF size, and the location of the new VF
within the network stack.

On the LLWN devices, in addition to the modular network stack, a Management Agent is required to interact with
the Management Server to download updates. These agents implement predefined methods for downloading, parsing
metadata, and properly installing the new VF(s). After downloading the Update Package, the Management Agent
parses the metadata to perform security checks, extracts the installation parameters, and then waits for a trigger from
the Management Server to install the new VF(s).

Our implementation of PENSIL leverages CoAP [29] to realize the management components, with the Manage-
ment Server implemented as a CoAP server and the Management Agent as a CoAP client. We also rely on the IETF
SUIT standard [30] to construct the Update Package, allowing VFs and their metadata to be transmitted in a standard-
ized and secure manner. The use of metadata guarantees safe, authenticated, and verifiable updates, reducing the risk
of corruption or malicious injection. The mechanisms by which the Network Manager collects metrics and determines
when to trigger VF updates will be explored in future work. The resulting management plane stack is composed of
CoAP and SUIT running over UDP and IPv6.

3.3. Update Process

The update process is illustrated in Fig. 3. It begins when the Network Manager decides to reconfigure a running
network protocol, a submodule or a single network function, and generates the corresponding configuration as a new
VF or a set of VFs (1), which are then sent internally to the Management Server. The Management Server then creates
an Update Package for each new VF (2) and notifies the relevant devices about the updates (3).

LLWN devices, through their Management Agents, begin downloading the new VF indicated by the Management
Server (4). Upon completing the download, the Management Agent parses the received Update Package and extracts
the new VF along with the metadata required for installation in the network stack (5). The Management Agent
then sends an acknowledgment to the Management Server to confirm the successful download (6) and waits for
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the installation command, which is issued only after the Management Server verifies that all required devices have
confirmed completion.

If a download process fails and no acknowledgment is received within a specified Timeout, the Management
Server retries up to the Maximum Number of Retries. Devices that still fail to complete the download are marked as
inaccessible. Once the Minimum Number of Updated Devices threshold is reached, the Management Server issues
an installation command, allowing devices to install the new VF and integrate it into the network stack (7). This
procedure ensures that all updated devices run the same version of the VF, avoiding inconsistencies among devices
that have completed the update. Future work will investigate optimal retransmission parameters and strategies for
handling inaccessible devices.

3.4. PENSIL’s Control-plane Deployments

PENSIL supports all conventional control-plane deployment models, including distributed and centralized ap-
proaches, while also enabling innovative hybrid models that combine the advantages of both, as illustrated in Fig. 4.

Distributed Control Plane Deployment: In this model, both the control and data planes are distributed across
LLWN devices, enabling decentralized decision-making through mechanisms such as routing protocols and MAC
scheduling. This approach is particularly effective for fast, local decisions and provides inherent redundancy and
resilience to errors. However, it can suffer from slow, suboptimal convergence and may become trapped in local
optima. Updating the control plane in this mode is complex, as it requires delivering modifications to multiple nodes
across potentially multi-hop paths, which increases the risk of failures and inconsistencies. PENSIL supports this
mode, as illustrated in Fig. 4-(a). Thanks to PENSIL’s modular design, updates can be very small and targeted to
individual functions, reducing the amount of data transmitted and thereby lowering the likelihood of update failures.

Centralized Control Plane Deployment: In this model, the control plane is centralized in a dedicated node—referred
to as the controller in SDN terminology—which makes global decisions on behalf of the nodes regarding routing,
packet processing, and resource allocation. The data plane can be seen as a set of matching-rule tables, where the
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control plane pushes, removes, or modifies rules. This approach simplifies LLWN devices and enables optimal,
network-wide decisions. However, collecting network metrics over potentially multi-hop paths is complex and can
lead to delayed or biased views, potentially resulting in suboptimal decisions by the controller. PENSIL supports this
mode by leveraging its central orchestrator as the controller, hosting the control plane and pushing rules to device
data planes via VFs, as illustrated in Fig. 4-(b). Because VF logic can be added or updated at runtime, new rule types
can be introduced without rebuilding device software. Moreover, if the orchestrator predicts network degradation, it
can proactively switch to a distributed control-plane mode by pushing the corresponding VFs before the degradation
occurs, ensuring continuity and robustness in network operation.

Hybrid Control Plane Deployment: Neither a fully distributed nor a fully centralized control plane is optimal
under all conditions. By splitting the control plane between the orchestrator and the devices, PENSIL enables a
hybrid mode, as illustrated in Fig. 4-(c), which addresses the limitations of each approach. With its global view, the
orchestrator can push convergence information instantly, reducing neighbor exchanges and enabling faster—or even
near-instant—convergence with optimal decisions. Meanwhile, local control plane components can make immediate
decisions, allowing the network to react quickly to dynamic conditions and maintain continuous operation even in
lossy or intermittent environments where connectivity to the orchestrator is unstable.

In conclusion, PENSIL’s modular architecture makes it straightforward to adjust the division of control decisions
and seamlessly switch between modes at runtime, providing enhanced programmability and adaptability for LLWN
across diverse operating conditions.

4. Evaluation

This section presents a proof-of-concept implementation on real hardware platforms to experimentally validate
the proposed PENSIL architecture. Specifically, the User Datagram Protocol (UDP)—a lightweight, connectionless
transport protocol—is decomposed into two VFs: UDP-Send and UDP-Recv. This protocol is chosen for its simplicity,
making it an ideal candidate for an initial validation of the framework. To demonstrate PENSIL’s flexibility, UDP is
then extended to support reliability through the addition of sequence numbers, acknowledgment messages (ACKs),

7



Border Router

Unused Node

Included Node

60 cm

Y

X

Figure 5: Network Nodes on FIT IoT-LAB Testbed [31]

and a retransmission queue. Future work will apply the same modular approach to more complex protocols across
different layers of the network stack.

All experiments are conducted on the FIT IoT-LAB testbed [31], using IoT-LAB M3 nodes representative of
typical LLWN devices. Each node features 256 KB of Flash memory, 64 KB of RAM, an ARM Cortex-M3 processor,
and a 2.4 GHz transceiver. To ensure reproducibility, the complete implementation of PENSIL is publicly available
on GitHub 1.

For benchmarking, the PENSIL UDP implementation is compared with the native UDP module of the RIOT
operating system [32], which requires retransmission of the entire firmware image for any update or modification
of the network stack. The employed network stack in our experiments follows the IETF protocol suite (UDP/IPv6-
RPL/6LoWPAN/IEEE 802.15.4), although PENSIL remains protocol-agnostic and can support alternative data-plane
or control-plane protocols.

As shown in Fig. 5, the experimental topology consists of 25 nodes physically deployed across the FIT IoT-LAB
testbed. One node operates as the Border Router (BR), providing end-to-end connectivity to the Orchestrator, while
the remaining nodes form a realistic multi-hop topology using the RPL routing protocol [17]. Depending on their
physical placement, the network depth extends up to three hops from the BR. Each node runs a temperature-sensing
application that periodically transmits a 1-byte UDP packet containing the measured temperature to the BR every

1https://github.com/ahmahmod/pensil
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40 seconds, with staggered transmission intervals to avoid collisions. To emulate realistic operating conditions, the
GoMacH duty-cycling protocol [33] is integrated to reduce power consumption. GoMacH employs a virtual TDMA
scheme to coordinate transmissions within a superframe of 10 slots, each lasting 1 ms and capable of carrying a single
packet. The evaluation focuses on three key aspects: (i) the impact of updates on network performance, (ii) update
performance in terms of size, duration, security and recovery, and (iii) system-level such as resource utilization and
energy efficiency.

4.1. Packet Delivery Ratio (PDR)

To demonstrate the benefits of the proposed UDP update, we design a controlled scenario in which link quality
degradation renders the connection unreliable and causes packet loss. To mitigate this issue, PENSIL dynamically
updates the running UDP module to a reliable variant by integrating sequence numbers, acknowledgments, and re-
transmissions upon timeout.

In this scenario, both the native and PENSIL implementations of UDP are evaluated. Two neighboring nodes
from the topology, denoted as node A and node B, are selected. Node A transmits 300 UDP packets to node B
in three successive stages of 100 packets each. In the first stage, both implementations use the baseline unreliable
UDP achieveing a 100% Packet Delivery Ratio (PDR). In the second stage, node B is configured to drop every fifth
packet, emulating link degradation and resulting in a 20% packet loss for both implementations. In the third stage,
UDP is updated in PENSIL to the reliable variant, which retransmits lost packets at the next available transmission
opportunity. Consequently, PENSIL restores the PDR to 100%, while the native implementation remains at 80%. The
evolution of the PDR across the three stages is depicted in Fig. 6.

This experiment highlights the importance of fast and selective network stack reconfiguration to maintain the
Quality of Service (QoS) required by diverse LLWN applications. Although the native implementation could also
achieve reliability by updating UDP, doing so would require a full-image OTA update involving the transmission of a
large binary image, longer update duration, and a reboot that interrupts communication. In contrast, PENSIL performs
an in-place update of only the targeted UDP function, drastically reducing transfer size and update time while enabling
immediate recovery without requiring system reboot, as further analyzed in the following sections.

4.2. Update Size and Time

Installing reliable UDP extensions in the native implementation requires modifying the operating system’s UDP
module and transmitting the full firmware image to all nodes. In contrast, PENSIL updates and transmits only the
two VFs that implement the UDP protocol, namely UDP-Send and UDP-Recv, rather than the full firmware. This
subsection presents a comparison of update size and duration between the two approaches.

Table 1 summarizes the update size transmitted to each node. The native full-image update produces a substantially
larger payload (109.6 KB) compared to PENSIL (5.54 KB). This reduction directly translates into fewer packets
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Native PENSIL
Updated Files Full Firmware VF1 (UDP-Send) VF2 (UDP-Recv)

Size (KB) 109.6 2.67 2.87

Total Size (KB) 109.6 5.54

Table 1: Update Size Comparison
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Figure 7: Update Time

transmitted from the orchestrator to the nodes. Assuming a 64-byte payload per packet, the native update requires
approximately 1,713 packets, whereas the PENSIL-based update needs only 87 packets (42 + 45), representing a
94.9% reduction in update size.

The corresponding update duration scales critically with network size. As shown in Fig. 7, PENSIL reduces the
total update time by 94.4% compared to the full-image approach. The native update experiences substantial delays due
to multi-hop communication, duty-cycling effects, and concurrent application traffic, all of which increase collision
probability and packet loss. Under the same conditions, PENSIL completes the update in less than 1,385 seconds
thanks to its significantly smaller update size, whereas the native update exceeds 24,779 seconds. The measured
update time also includes retransmissions to recover from packet loss at both the MAC layer (GoMacH) and the
application layer (CoAP).

Overall, PENSIL demonstrates superior scalability and efficiency, particularly in dense, multi-hop, and lossy
networks where minimizing update size is crucial for rapid convergence. Larger updates introduce higher packet
overhead, increased loss probability, more retransmissions, and elevated network contention, all of which degrade
network performance. While PENSIL substantially mitigates these limitations, further optimization, such as employ-
ing multicast dissemination for update blocks, could improve scalability and reduce update latency even further.

4.3. Post-deployment Convergence
One major limitation of full-image firmware updates is the loss of volatile network state caused by the mandatory

reboot that follows installation. This reboot interrupts network connectivity, forcing nodes to re-establish commu-
nication and rebuild routing tables. In contrast, PENSIL allows selective updates of VFs without requiring a device
reboot, preserving active connections and eliminating the need for time-consuming reconvergence.

The reconvergence time after the update is illustrated in Fig. 8. Here, convergence time refers to the duration
required for the Border Router (BR) to re-register a node in its forwarding table and restore end-to-end communication.
In the native implementation, this process takes over 60 seconds and increases with hop distance from the BR, as nodes
sequentially exchange routing messages to rebuild the topology. In contrast, PENSIL maintains the existing network
state during the update, allowing nodes to remain fully operational and eliminating reconvergence delays.
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Figure 8: Convergence Time after Update

Native
PENSIL

VF1 (UDP-Send) VF2 (UDP-Recv)

Signature Verification (msec) 2649 2649 2649

Other Verifications & Validations (msec) 1040 1040 1040

Total (msec) 3689 7378

Table 2: Security Cost

Whereas native updates cause state loss and require a reconvergence process, PENSIL maintains connectivity and
needs no post-update stabilization. This preserves ongoing application sessions from service interruptions and scales
gracefully with network depth, demonstrating that fine-grained VF updates can achieve seamless operation while
enabling rapid and reliable network reconfiguration.

4.4. Security and Recovery Cost
PENSIL includes multiple security mechanisms to ensure the authenticity, integrity, and reliability of the update

process. Fig. 9a illustrates the sequence of update phases together with the security checks, including signature and
digest verification, sequence number and version validation, and vendor and device class identification. Among these,
signature verification represents the majority of computational cost, as detailed in Table 2, accounting for more than
70% of the total verification and validation overhead. Each VF included in a PENSIL update undergoes independent
verification and validation, unlike the native full-image approach, which performs these checks only once per update.
Consequently, when two VFs are updated (UDP-Send and UDP-Recv), the total security verification time in PENSIL
roughly doubles that of the native update. In general, the security cost scales linearly with the number of updated
VFs, approximating N times the verification cost of a single image, where N denotes the number of updated VFs.
Nevertheless, this additional cost remains marginal compared to the substantial reduction in update time achieved by
PENSIL’s compact update size.

PENSIL also includes recovery mechanisms to maintain robustness in case of update failures. If any phase of
the update process fails, the device notifies the orchestrator, which triggers a recovery procedure to retransmit the
corrected update. When same update sequence is applied, both PENSIL and native full-image updates incur similar
additional recovery time if the failure occurs before the download phase (P9). However, as shown previously, the
download time for full-image updates is much longer than for PENSIL, leading to a costly recovery when failures
occur during or after the download phase. Fig. 9b compares the recovery delays in PENSIL and native full firmware
image following an update failure of the UDP-Recv VF and the firmware image respectively to the same node, with
delays measured relative to the phase of the update process in which the failure occurs. The update process in the

11



Receive URI Download Update
package Verify Signature Validate Version Validate Sequence

Number

Allocate & Format
MemoryValidate Vendor IDValidate Device ClassDownload FileVerify Image Digest

P1 P2 P3 P4 P5

P6P7P8P9P10

(a)

0 250 500 750 1000 1250 1500 1750
Time (sec)

Fail at P1

Fail at P2

Fail at P3

Fail at P4

Fail at P5

Fail at P6

Fail at P7

Fail at P8

Fail at P9

Fail at P10

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

PENSIL NATIVE FULL
FIRMWARE UPDATE

Attempt (P1  Pi)
ACK
Retry (P1  P10)

(b)

Figure 9: Update and Recovery: (a) Update Phases, (b) Recovery Cost on Every Phase

native implementation is consistently longer than in PENSIL due to the need to transmit the entire firmware. The
highest recovery cost, in both implementations, arises when a failure occurs during or after the download phase when
all retransmission retries fail in MAC layer and CoAP, as the node must restart the process after partially or fully
downloading the update. Conversely, failures occurring before the download phase result in lower recovery times.

Despite these variations, the overall recovery latency in PENSIL remains considerably lower than that of the
native full-image update, particularly for failures during the long download phase, confirming PENSIL’s resilience
and efficiency under adverse conditions.

4.5. Memory Footprint

Enabling PENSIL in the RIOT operating system requires adding specific modules. Fig. 10 compares the flash and
RAM memory requirements of PENSIL with those of the native RIOT implementation for the UDP protocol.

Regarding flash memory, PENSIL introduces an additional footprint composed of two parts: (i) Architecture-
related: includes the VF engine that enable virtual functions in the operating system, as well as the management
plane components that interface between the orchestrator and the LLWN devices. These elements are required only
once, regardless of the number of implemented protocols. (ii) Protocol-related: contains the UDP functionalities.
In PENSIL, the UDP code size is nearly twice that of the native implementation due to the decomposition of UDP
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functions into two VFs, which introduces minor code duplication, additional dependencies, and reduced compiler
optimization. However, the overall increase in flash memory remains small and acceptable, totaling 8.57 KB, which
corresponds to 7.82 % of the native RIOT firmware’s total size.

Regarding RAM memory, the native RIOT implementation allocates a dedicated thread for each protocol, meaning
that the UDP protocol alone requires a 1 KB RAM stack. In contrast, PENSIL invokes the UDP-Send or UDP-Recv
VFs directly from the triggering thread, eliminating the need for an additional dedicated thread. Although it introduces
an additional 200 Bytes of RAM for the VF engine, PENSIL reduces the overall RAM usage by 800 Bytes.

Another important aspect is the update slot, the memory space required to temporarily store new updates during
download. In the native implementation, which relies on full-image OTA updates, a flash memory slot equal to the
size of the new firmware image is required. Such large memory space may not always be available on constrained
devices, representing a critical limitation. By contrast, PENSIL requires only a RAM slot at least as large as the largest
VF to be updated. This slot can be configured according to the maximum possible size of a VF. In our experiment,
updating UDP requires 110.6 KB of flash memory in the native implementation, whereas PENSIL needs only 3 KB
of RAM, overcoming one of the major limitations of constrained devices.

The variation in memory usage introduced by PENSIL is negligible, demonstrating that it operates well within the
memory constraints typical of LLWNs and is therefore suitable for deployment in such networks.

4.6. Power Consumption

Energy is one of the most constrained resources in LLWNs, making it crucial to ensure that PENSIL does not
significantly increase power consumption. To compare the power consumption of PENSIL-based UDP with the
native UDP implementation in RIOT, 1,000 packets were transmitted locally using the loopback interface on one
node. This setup allows us to measure the combined transmission and reception power consumption on the same node
while excluding the contribution of the radio transceiver. Measurements were performed using the INA226 hardware
monitor available on the FIT IoT-LAB testbed. Power samples were collected every 588 µs, with an averaging
count of 512. Fig. 11 presents the distribution of the collected power consumption samples. Results show that the
power consumption of PENSIL is comparable to that of the native implementation, confirming that it introduces no
significant overhead. This can be attributed to the lightweight design of PENSIL’s VFs.
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4.7. Execution Time

This section evaluates the processing time, a key factor in LLWNs when stringent timing constraints may apply,
such as in TDMA-based MAC protocols. To this end, we measured in-device processing time required to send and
receive a packet at the UDP layer—referred to as the execution time—and compared it with that of the native RIOT
implementation. A total of 1,000 messages were sent between two nodes, node A to node B, measuring the send
time on node A and the receive time on node B. Fig. 12 shows the average send and receive times over the 1,000
transmissions. First, the send time is longer than the receive time in both implementations due to implementation
details, as the send process includes a while loop. Second, PENSIL introduces a small execution time overhead in both
sending and receiving due to virtualization with VFs, amounting to 88.86 µs for sending and 85.29 µs for receiving.
This additional delay mainly results from the interactions between the UDP VFs (UDP-Send and UDP-Recv) and
the operating system through APIs. Nevertheless, the observed overhead—on the order of tens of microseconds—is
negligible compared to typical 10 ms time slot duration of TDMA-based MAC protocols, ensuring that it does not
compromise timing requirements. Future work will confirm this through practical evaluation with a TDMA-based
MAC implementation.
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5. Conclusion and Future Work

Low-Power and Lossy Wireless Networks (LLWNs) operate in highly dynamic environments, where fixed and
rigid communication protocol stacks struggle to meet evolving requirements. This motivates the need for a fully
programmable network stack, capable of fine-grained adaptation in both the control and data planes, and able to
evolve seamlessly over time.

This paper introduces PENSIL, a network architecture that represents a shift from hardware-centric to software-
driven networking, paving the way for fully programmable wireless networks. PENSIL leverages lightweight virtual
functions that can be chained into protocols, updated over-the-air, and semantically managed by a central orchestrator.
For example, a routing protocol could be dynamically extended to include a new metric for path selection, or a
MAC protocol could be updated to implement a more efficient backoff strategy—without requiring device reboots
or full firmware updates. The architecture supports distributed, centralized, and hybrid control-plane deployments,
overcoming the limitations of existing approaches while providing unprecedented flexibility.

We validated PENSIL through a proof-of-concept implementation on real hardware. The standard unreliable UDP
protocol was implemented and dynamically updated to add reliability. UDP was chosen for its simplicity, as the entire
protocol can be represented using only two VFs (UDP-Send and UDP-Recv), making it ideal for a first demonstration
of PENSIL’s capabilities. Even in this simple scenario, PENSIL drastically reduced update size and duration while
maintaining seamless, reboot-free operation. These results suggest that PENSIL can achieve similar or greater benefits
with more complex protocols such as TCP or RPL, where fine-grained programmability could enhance adaptability,
robustness, and efficiency.

We further quantified the impact of traditional full-image updates, which require device rebooting and lead to
reconvergence delays exceeding 60 seconds along with service interruptions. PENSIL fully mitigates these limita-
tions while keeping security verification overhead modest and recovery latency consistently lower than full-image
updates. Resource usage remains practical: flash memory increases slightly due to the VF engine (below 10% of
native firmware), RAM usage is reduced, power consumption is comparable, and processing overhead is negligible,
confirming suitability for time-critical LLWN applications.

Future work will extend PENSIL validation to additional protocol layers and different control-plane deployments,
particularly MAC protocols with strict timing requirements such as TDMA. We also plan to design and evaluate
robust update-distribution algorithms to ensure reliable delivery across the network. Beyond this, exploring automated
adaptation strategies responsive to dynamic network conditions will further establish PENSIL as a foundation for fully
software-driven, programmable wireless networks.
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